Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GiẢI:
VẼ DG vuông góc vối AH (G thuộc AH). Suy ra: DG//BC.
Ta có:
Góc BAH = góc BCA ( cùng phụ góc B)
Mà góc BCA = góc GDA (góc trong cùng phía)
Do đó: góc BAH = góc GDA
Xét hai tam giác ABH và DAG, ta có:
ü góc BAH = góc GDA (chứng minh trên)
ü AB=AD ( giả thuyết)
ü ABH vuông tại H, và AHG vuông tại G.
Nếu học tới các trường hợp bằng nhau của tam giác vuông thì ghi là:
Tam giác ABH = tam giác DAG (cạnh huyền góc nhon)
Nếu chưa học tới thì ghi:
Tam giác ABH = tam giác DAG (góc cạnh góc)
Suy ra: AH=DG
Lại có: DG=HE (vì EDGH là hình chủ nhật)
Vậy AH=HE
A B C H K E I D
a.Xét tam giác ABH vuông tại H và góc B = 0độ nên góc BAH = 30độ
Ta có ; góc BAC - góc BAH = góc HAC
\(\Rightarrow\)góc HAC = 90độ - 30độ = 60độ
Ta lại có ; AK là tia pg góc HAC nên
góc HAK = góc KAC = \(\frac{\widehat{HAC}}{2}=\frac{60^0}{2}=30^0\)
Suy ra ; góc HAK = góc BAH
Xét hai tam giác vuông ABH và tam giác vuôngAKH có
góc AHB = góc AHK = 90độ
cạnh AH chung
góc BAH = góc HAK [ theo chứng minh trên ]
Do đó ; tam giác ABH = tam giác AKH [ g.c.g ]
\(\Rightarrow AB=AK\Rightarrow\)tam giác ABK cân [ 1 ]
Vì KE // AC nên góc BEK = góc BAC
mà bài cho góc BAC = 90 độ
\(\Rightarrow\)góc BEK = 90độ
\(\Rightarrow\)KE vuông góc với AB
Ta có
AH và KE là đường cao của tam giác ABK
mà I là giao điểm của AH và KE
Suy ra
I là trực tâm của tam giác ABK
\(\Rightarrow\)BI vuông góc với AK và tam giác ABK cân [ theo 1 ]
Ta có định nghĩa sau
Trong 1 tam giác cân đường cao vừa là trung trực, vừa là trung tuyến và là phân giác
Suy ra ; BI là tia phân giác góc ABK
phần b mk chưa nghĩ ra nhé
Chúc bạn học tốt
a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
AH=AK(gt)
Do đó: ΔAHD=ΔAKD(Cạnh huyền-cạnh góc vuông)
Lời giải:
a) Xét tam giác $AHD$ và $AKD$ có:
$\widehat{AHD}=\widehat{AKD}=90^0$
$AD$ chung
$AH=AK$ (gt)
$\Rightarrow \triangle AHD=\triangle AKD$ (ch-cgv)
b)
Vì $\triangle AHD=\triangle AKD$ nên $DH=DK$
Mà $AH=AK$
Kết hợp 2 điều này lại suy ra $AD$ là trung trực của $HK$
Ta có đpcm.
a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
AH=AK(gt)
Do đó: ΔAHD=ΔAKD(cạnh huyền-cạnh góc vuông)
b) Vì △AHD=△AKD nên DH=DK
Mà AH=AK
Kết hợp 2 điều này lại suy ra AD là trung trực của HK
Ta có đpcm
a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AH=AK
AD chung
=>ΔAHD=ΔAKD
b: AK=AH
DH=DK
=>AD là trung trực của HK