K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2020

GiẢI:

VẼ DG vuông góc vối AH (G thuộc AH). Suy ra: DG//BC.

Ta có:

Góc BAH = góc BCA  ( cùng phụ góc B)

Mà góc BCA = góc GDA (góc trong cùng phía)

Do đó: góc BAH = góc GDA

Xét hai tam giác ABH và DAG, ta có:

ü góc BAH = góc GDA  (chứng minh trên)

ü AB=AD ( giả thuyết)

ü ABH vuông tại H, và AHG vuông tại G.

Nếu học tới các trường hợp bằng nhau của tam giác vuông thì ghi là:

Tam giác ABH = tam giác DAG  (cạnh huyền góc nhon)

Nếu chưa học tới thì ghi:

Tam giác ABH = tam giác DAG  (góc cạnh góc)

Suy ra: AH=DG

Lại có: DG=HE (vì EDGH là hình chủ nhật)

Vậy AH=HE

9 tháng 7 2020

A B C H K E I D

a.Xét tam giác ABH vuông tại H và góc B = 0độ nên góc BAH = 30độ

Ta có ; góc BAC - góc BAH = góc HAC 

\(\Rightarrow\)góc HAC = 90độ - 30độ = 60độ

Ta lại có ; AK là tia pg góc HAC nên 

góc HAK = góc KAC = \(\frac{\widehat{HAC}}{2}=\frac{60^0}{2}=30^0\)

Suy ra ; góc HAK = góc BAH 

Xét hai tam giác vuông ABH và tam giác vuôngAKH có

           góc AHB = góc AHK = 90độ

           cạnh AH chung

           góc BAH = góc HAK [ theo chứng minh trên ]

Do đó ; tam giác ABH = tam giác AKH [ g.c.g ]

\(\Rightarrow AB=AK\Rightarrow\)tam giác ABK cân [ 1 ]

 Vì KE // AC nên góc BEK = góc BAC 

mà bài cho góc BAC = 90 độ

\(\Rightarrow\)góc BEK = 90độ

\(\Rightarrow\)KE vuông góc với AB

Ta có

AH và KE là đường cao của tam giác ABK 

mà I là giao điểm của AH và KE 

Suy ra

I là trực tâm của tam giác ABK

\(\Rightarrow\)BI vuông góc với AK và tam giác ABK cân [ theo 1 ]

Ta có định nghĩa sau

Trong 1 tam giác cân đường cao vừa là trung trực, vừa là trung tuyến và là phân giác 

Suy ra ; BI là tia phân giác góc ABK

phần b mk chưa nghĩ ra nhé 

Chúc bạn học tốt

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có 

AD chung

AH=AK(gt)

Do đó: ΔAHD=ΔAKD(Cạnh huyền-cạnh góc vuông)

23 tháng 5 2021

a) Xét tam giác AHDAHD và AKDAKD có:

ˆAHD=ˆAKD=900AHD^=AKD^=900

ADAD chung

AH=AKAH=AK (gt)

⇒△AHD=△AKD⇒△AHD=△AKD (ch-cgv)

b) 

Vì △AHD=△AKD△AHD=△AKD nên DH=DKDH=DK

Mà AH=AKAH=AK

Kết hợp 2 điều này lại suy ra ADAD là trung trực của HK

AH
Akai Haruma
Giáo viên
28 tháng 3 2021

Lời giải:

a) Xét tam giác $AHD$ và $AKD$ có:

$\widehat{AHD}=\widehat{AKD}=90^0$

$AD$ chung

$AH=AK$ (gt)

$\Rightarrow \triangle AHD=\triangle AKD$ (ch-cgv)

b) 

Vì $\triangle AHD=\triangle AKD$ nên $DH=DK$

Mà $AH=AK$

Kết hợp 2 điều này lại suy ra $AD$ là trung trực của $HK$

Ta có đpcm.

AH
Akai Haruma
Giáo viên
28 tháng 3 2021

Hình vẽ:

undefined

13 tháng 5 2021

a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
AH=AK(gt)
Do đó: ΔAHD=ΔAKD(cạnh huyền-cạnh góc vuông)

13 tháng 5 2021

b) Vì △AHD=△AKD nên DH=DK
Mà AH=AK
Kết hợp 2 điều này lại suy ra AD là trung trực của HK
Ta có đpcm