K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2021

a) Xét ΔAHB có ^AHB = 900 ( AH ⊥ BC ) => ΔAHB vuông tại H

Khi đó : \(\sin B=\sin\widehat{ABH}=\frac{AH}{AB}=\frac{5}{13};\cos B=\cos\widehat{ABH}=\frac{BH}{AB}=\frac{\sqrt{AB^2-AH^2}\left(pythagoras\right)}{AB}=\frac{12}{13}\)

ΔABC vuông tại A => ^B + ^C = 900 => \(\sin C=\cos B=\frac{12}{13}\)

b) Áp dụng hệ thức lượng trong tam giác vuông cho ΔABC vuông tại A ta có :

\(AH^2=BH\cdot HC\Rightarrow AH=\sqrt{BH\cdot HC}=2\sqrt{3}\)

cmtt như a) ta có được ΔAHC vuông tại H

Khi đó : \(\sin C=\sin\widehat{ACH}=\frac{AH}{AC}=\frac{AH}{\sqrt{AH^2+HC^2}}=\frac{\sqrt{21}}{7};\cos C=\cos\widehat{ACH}=\frac{CH}{AC}=\frac{CH}{\sqrt{AH^2+HC^2}}=\frac{2\sqrt{7}}{7}\)ΔABC vuông tại A => ^B + ^C = 900 => \(\sin B=\cos C=\frac{2\sqrt{7}}{7}\)

 
22 tháng 3 2018

a, Áp dụng các tỉ số lượng giác cho tam giác vuông ABH để tính sinB, rồi từ đó suy ra sinC

b, Áp dụng hệ thức lượng về cạnh góc vuông và hình chiếu lên cạnh huyền trong tam giác vuông ABC để tính AB. Sau đó làm tương tự câu a)

a: AH=căn 13^2-5^2=12cm

CH=12^2/5=28,8cm

BC=28,8+5=33,8cm

AC=căn 28,8*33,8=31,2cm

b: AH=căn 3*4=2căn 3(cm)

AB=căn 3*7=căn 21(cm)

AC=căn 4*7=2căn 7(cm)

c: CH=4^2/3=16/3cm

AB=căn 4^2+3^2=5cm

AC=căn 16/3*25/3=20/3(cm)

6 tháng 9 2018

HS tự làm

22 tháng 1 2021

A B H C 13 5

a) Áp dụng đlí Py - ta - go cho tam giác HAB ( ^H =90^o )

Ta có : \(AB^2=AH^2+BH^2\)

\(13^2=AH^2+5^2\)

\(AH^2=13^2-5^2\)

\(\Rightarrow AH=\sqrt{13^2-5^2}\)

\(\sin B=\frac{AH}{AB}=\frac{\sqrt{13^2-5^2}}{13}\approx0,923\)

Áp dụng hệ thức lượng cho tam giác ABC( ^A = 90^o ) , đường cao AH , ta có :

\(AH^2=BH.HC\Rightarrow HC=\frac{AH^2}{BH}=\frac{12^2}{5}=28,8\)

=> BC = 5 + 28,8 = 33,8

\(\sin C=\frac{AB}{BC}=\frac{13}{33,8}\approx0,384\)

Vậy : \(\sin B\approx0,923\)

         \(\sin C\approx0,384\)

27 tháng 7 2018

Bài 1 :

Câu a : Theo định lý py-ta-go cho \(\Delta AHB\) ta có :

\(AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=12cm\)

\(\Rightarrow\sin B=\dfrac{AH}{AB}=\dfrac{12}{13}\approx0,92\)

Theo hệ thức lượng cho \(\Delta ABC\) ta có :

\(AH^2=BH.HC\Leftrightarrow HC=\dfrac{AH^2}{BH}=\dfrac{12^2}{5}=28,8cm\)

Theo định lý py - ta - go cho \(\Delta AHC\) ta có :

\(AC=\sqrt{AH^2+HC^2}=\sqrt{12^2+28,8^2}=31,2cm\)

\(\Rightarrow\sin C=\dfrac{AH}{AC}=\dfrac{12}{31,2}\approx0,38\)

Câu b tương tự !

Chúc bạn học tốt

a: AH=căn 13^2-5^2=12

Xét ΔAHB vuông tại H có 

sin B=AH/AB=12/13=cos C

cos B=sin C=BH/AB=5/13

tan B=cot C=AH/BH=12/5

cot B=tan C=BH/AH=5/12

b: AH=căn 3*4=2*căn 3(cm)

BC=3+4=7(cm)

AB=căn 3*7=căn 21(cm)

AC=căn 4*7=2*căn 7(cm)

Xét ΔABC vuông tại A có 

sin B=cos C=AC/BC=2*căn 7/7

cos B=sin C=AB/BC=căn 21/7

tan B=cot C=2*căn 7/căn 21=2/căn 3

cot B=tan C=căn 21/2*căn 7=căn 3/2

AH=căn 3*4=2căn 3(cm)

AB=căn 3*7=căn 21(cm)

AC=căn 4*7=căn 28(cm)

sin B=AC/BC=căn 28/7=0,7559

sin C=AB/BC=căn 21/7=0,6547

a: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=3^2+4^2=25\)

=>\(BC=\sqrt{25}=5\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

=>\(AH\cdot5=3\cdot4=12\)

=>AH=12/5=2,4(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(BH\cdot BC=BA^2\)

=>\(BH\cdot5=3^2=9\)

=>BH=9/5=1,8(cm)

b: Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(sinB=\dfrac{4}{5}\)

Xét ΔABC vuông tại A có \(sinC=\dfrac{AB}{BC}\)

=>\(sinC=\dfrac{3}{5}\)

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o