K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Lời giải:
a. Xét tam giác $AHB$ và $CAB$ có:
$\widehat{AHB}=\widehat{CAB}=90^0$

$\widehat{B}$ chung

$\Rightarrow \triangle AHB\sim \triangle CAB$ (g.g)

b. Từ tam giác đồng dạng phần a suy ra:

$\frac{HB}{AB}=\frac{AB}{CB}$

$\Rightarrow HB=\frac{AB^2}{BC}=\frac{AB^2}{\sqrt{AB^2+AC^2}}=\frac{15^2}{\sqrt{15^2+20^2}}=9$ (cm)

c. Xét tam giác $AHD$ và $ABH$ có:

$\widehat{A}$ chung

$\widehat{ADH}=\widehat{AHB}=90^0$

$\Righarrow \triangle AHD\sim \triangle ABH$ (g.g)

$\Rightarrow \frac{AH}{AB}=\frac{AD}{AH}$

$\Rightarrow AB.AD=AH^2(*)$

Tương tự ta cũng chỉ ra $\triangle AHE\sim \triangle ACH$ (g.g)

$\Rightarrow AE.AC=AH^2(**)$
Từ $(*); (**)\Rightarrow AB.AD=AE.AC$ (đpcm)

 

AH
Akai Haruma
Giáo viên
30 tháng 3 2023

Hình vẽ:

23 tháng 4 2020

tui hoc l 6

23 tháng 4 2020

Ớ hok dốt lắm tớ k bít làm đâu

a: Xét ΔAHB vuông tại H và ΔADH vuông tại D có

góc HAB chung

Do đó: ΔAHB\(\sim\)ΔADH

Xét ΔAHC vuông tại H và ΔAEH vuông tại E có

góc HAC chung

DO đó: ΔAHC\(\sim\)ΔAEH

b: Xét ΔAHB vuông tại H có HD là đường cao

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

11 tháng 4 2021

Cho Tam giác ABC vuông tại A(AB<AC) có đường cao ah.a chứng minh Tam giác BAH đồng dạng với Tam giác BCA.b vẽ BD là đường phân giác của Tam giác ABC cắt AH tại k. Chứng minh BA.BK=BD.BH.c qua C kẻ đường thẳng vuông góc với BD tại E. Chứng minh AE=EC.

16 tháng 2 2023

....

25 tháng 2 2019

A B C H

Giải: a) Ta có : \(S_{\Delta ABC}\)\(\frac{AH.BC}{2}\) (1)

                      \(S_{\Delta ABC}\)\(\frac{AB.AC}{2}\) (2)

Từ (1) và (2) suy ra \(\frac{AH.BC}{2}=\frac{AB.AC}{2}\) => AH.BC = AB.AC (Đpcm)

b) Xét t/giác ABC vuông tại A (áp dụng định lí Pi - ta - go)

Ta có: BC2 = AB2 + AC2 = 152 + 202 = 225 + 400 = 625

=> BC = 25

Ta có: AH.BC = AB.AC (cmt)

hay AH. 25 = 15.20

=> AH.25 = 300

=> AH = 300 : 25

=> AH = 12

c) chưa hc

a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có 

\(\widehat{ABC}\) chung

Do đó; ΔAHB\(\sim\)ΔCAB

Suy ra: AB/CB=HB/AB

hay \(AB^2=HB\cdot BC\)

b: BC=25cm

BH=225:25=9(cm)

CH=25-9=16(cm)

c: Xét ΔAHB vuông tại H có HM là đường cao

nên \(AM\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HN là đường cao

nên \(AN\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AM\cdot AB=AN\cdot AC\)