K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AEHF có 

\(\widehat{FAE}=90^0\)

\(\widehat{AFH}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ΔEHB vuông tại E(gt)

mà EN là đường trung tuyến ứng với cạnh huyền HB(N là trung điểm của HB)

nên \(EN=\dfrac{HB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

a) Xét tứ giác EHFA có :

BAC = 90*

HF \(\perp\)AC(gt)

HE\(\perp\)AB (gt)

=> EHFA là hình chữ nhật 

=> AH = EF

b) Vì EHFA là hình chữ nhật (cmt)

=> EH//AF , EH= AF

Mà E là trung điểm PH

=> PE = EH

=> PE = AF

Xét tứ giác PEFA có :

PE = AF

PE// AF ( EH//AF , E\(\in\)PH )

=> PEFA là hình bình hành 

d) Vì PEFA là hình bình hành (cmt)

=> FE//PA (1)

Ta có : HF = FQ (gt)

MÀ HF = EA

=> FQ = EA

Xét \(\Delta HAQ\)có :

AF là trung trực 

=> \(\Delta HAQ\) cân tại A

=> AH = AQ 

Mà AH = EF (cmt)

=> EF = AQ
Xét tứ giác EFQA ta có :

EF = AQ

EA = FQ
=> EFQA là hình bình hành 

=> EF// AQ(2)

(1)(2) => P,A,Q thẳng hàng 

18 tháng 11 2021

b ưi

18 tháng 11 2021

mk chỉ ghi cách lm th nhé

20 tháng 12 2021

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

c: Ta có: ΔAHC vuông tại H

mà HF là đường trung tuyến

nên HF=AF

mà AF=ME

nên HF=ME

Xét ΔABC có

E là trung điểm của AB

F là trung điểm của AC

Do đó: FE là đường trung bình

=>FE//BC

hay FE//MH

Xét tứ giác EFMH có FE//MH

nên EFMH là hình thang

mà FH=ME

nên EFMH là hình thang cân

d: Xét tứ giác MNAB có 

MN//AB

MN=AB

Do đó: MNAB là hình bình hành

Suy ra: MA cắt NB tại trung điểm của mỗi đường(1)

Ta có: AEMF là hình chữ nhật

nên MA cắt EF tại trung điểm của mỗi đường(2)

Từ (1) và (2) suy ra AM,BN,FE đồng quy

11 tháng 12 2017

A B C M H F D K I G

Câu a và b cô hướng dẫn:

a) Tứ giác ADHE có 3 góc vuông nên nó là hình chữ nhật.

b)  Tứ giác FDEA là hình bình hành nên AF // DE

c) Xét tam giác AFH có AD là đường cao đồng thời trung tuyến nên nó là tam giác cân.

Vậy thì AD là tia phân giác hay \(\widehat{FAD}=\widehat{DAH}\)

Do tam giác ABC vuông tại A, M là trung điểm BC nên  MA = MB = MC hay \(\widehat{BAM}=\widehat{ABM}\)

Vậy thì \(\widehat{FAD}+\widehat{BAM}=\widehat{DAH}+\widehat{ABM}=90^o\)

\(\Rightarrow\widehat{FAM}=90^o\)

Vậy tam giác AFM vuông.

c) Gọi giao điểm của AM và DE là G.

Do FA // DE mà AM vuông góc FA nên AM vuông góc DE.

Vậy thì ta có ngay AFDE là hình chữ nhật.

Suy ra KG giao AD tại trung điểm mỗi đường hay I cũng là trung điểm KG.

Vậy thì AM, DE và KI đồng quy tại điểm G.

16 tháng 12 2017

Em cảm ơn ạ !