Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình ra hì. Mình vẽ ko được
Bài làm
Tam giác AHB vuông tại H: AH^2+HB^2=AB^2
Tam giác AHC vuông tại H:AH^2+HC^2=AC^2
Tam giác ABC vuông tại A:BC^2=AB^2+AC^2
BC=HB+HC=9+16=25
BC^2=AH^2+HB^2+AH^2+HC^2=2AH^2+HB^2+HC^2=25^2=625
2HA^2+9^2+16^2=625
2HA^2+337=625
2HA^2=288
HA^2=144
HA=12
tự vẽ hình:::::
áp dụng định lí py-ta-go vào tam giác BHA vuông tại H ta được:
BH2+AH2=AB2(1)
áp dụng định lí py-ta-go vào tam giác AHC vuông tại H ta được:
HC2+AH2=AC2(2)
áp dụng định lí py-ta-go vào tam giác ABC vuông tại A ta được:
AB2+AC2=BC2(3)
Công hai vế (1);(2) kết hợp với (3) ta được:
HB2+HC2+AH2+AH2=AB2+AC2
92+162+2AH2=BC2
337+2AH2=(9+16)2
2AH2=625-337
2AH2=288
AH2=144
=>AH=√144=12(cm)
bạn ơi ko phải mk ko giúp mà về phần hình học mình dốt lắm
cho tam giác ABC cân tại A, kẻ AH vuông góc BC ( H thuộc BC )
a) CHỨNG MINH GÓC BAH = GÓC CEB
b) CHO AH= 3 cm , BC= 8 cm . TÍNH ĐỘ DÀI AC
c) KẺ HE VUÔNG GÓC AB , HD VUÔNG GÓC AC , CHỨNG MINH AE=AD
d) CHỨNG MINH ED SONG SONG BC
trả lời :
A B C H 2cm 8cm
Xét \(\Delta\)ABC vuông tại A , có:
AH là đường cao (H\(\in\)BC)
Ta lại có: BC = HB + HC = 2 + 8 = 10 (cm) (1)
\(\Delta\)ABC vuông tại A
=> BC là cạnh huyền (2)
Từ (1) và (2) => AH = \(\frac{1}{2}\)BC = 4(cm)
A B H C
+) +) Xét Δ ABH vuông tại H
\(\Rightarrow AB^2=AH^2+BH^2\) ( định lí Py-ta-go )
\(\Rightarrow AB^2=4^2+2^2\)
\(\Rightarrow AB^2=16+4=20\)
\(\Rightarrow AB=\sqrt{20}\) ( do AB > 0 )
+) Xét Δ AHC vuông tại H
\(\Rightarrow AC^2=AH^2+HC^2\) ( định lí Py-ta-go)
\(\Rightarrow AC^2=4^2+8^2\)
\(\Rightarrow AC^2=16+64=80\)
\(\Rightarrow AC=\sqrt{80}\) ( do AC > 0 )
+) Ta có \(AH\perp BC\) tại H
\(\Rightarrow H\in BC\)
\(\Rightarrow\) HB + HC = BC
=> BC = 2 + 8 = 10 ( cm)
Vậy ...
@@ Học tốt
Đề bài nó cho số k đẹp hay là t tính sai nhỉ ?
Xét tam giác ABC vuông tại A, đường cao AH
Áp dụng hệ thức : AH^2 = HB . HC = 16 . 9
=> AH = 4 . 3 = 12 cm
vì BH=9 , HC=16
=> BC=25
xét tam giác ABC ...., ta có
BC^2=CA^2+AB^2
hay 25^2=20^2 +Ab^2
625=400 + AB^2
AB^2=225
AB=15
xét tam giác ABH...., ta có
AB^2=AH^2 + BH^2
hay 15^2= Ah^2 + 9^2
225= AH^2 +81
AH^2= 144
AH=12
thêm kl và những chỗ còn thiếu vào nhé
Ta có: \(BC=BH+CH=9+16=25\)
Áp dụng định lý Py- ta - go vào \(\Delta ABC\), ta được:
\(AB^2=BC^2-AC^2\)
\(\Leftrightarrow AB^2=25^2-20^2\)
\(\Leftrightarrow AB^2=625-400\)
\(\Leftrightarrow AB^2=225\)
\(\Leftrightarrow AB=\sqrt{225}=15\)
Áp dụng định lý Py- ta - go vào \(\Delta AHC\), ta được:
\(AH^2=AC^2-CH^2\)
\(\Leftrightarrow AH^2=20^2-16^2\)
\(\Leftrightarrow AH^2=400-256\)
\(\Leftrightarrow AH^2=144\)
\(\Leftrightarrow AH=\sqrt{144}=12\)
Bài làm
BC=BH+HC=9+6=25(cm)BC=BH+HC=9+6=25(cm)
Áp dụng định lý Py-ta-go với tam giác ABC vuông tại A, ta có:
BC2=AB2+AC2BC2=AB2+AC2
⇒AB2=BC2+AC2=252−202⇒AB2=BC2+AC2=252−202
=625−400=225=152=625−400=225=152
Vậy AB=15cm
Áp dụng định lý Py-ta-go với tam giác AHC vuông tại H, ta có:
AH2=AC2−HC2=202−162=122AH2=AC2−HC2=202−162=122
Vậy AH= 12cm
# Học tốt #
`Answer:`
Có `BC=HB+HC=9+16=25cm`
Áp dụng định lý Pytago vào `\triangleABC` vuông tại `A=>BC^2=AB^2+AC^2(1)`
Áp dụng định lý Pytago vào `\triangleAHB` vuông tại `H=>AB^2=HB^2+AH^2(2)`
Áp dụng định lý Pytago vào `\triangleAHC` vuông tại `H=>AC^2=HC^2+AH^2(3)`
Từ `(1)(2)(3)=>AB^2+AC^2=HB^2+HC^2+AH^2+AH^2`
`=>BC^2=9^2+16^2+2AH^2`
`=>25^2=81+256+2AH^2`
`=>625 = 337 + 2AH²`
`=>2AH² = 625 - 337 = 288`
`=>AH^2=144`
`=>AH=\sqrt{144}=12cm`