Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`Answer:`
Sửa đề phần c: Chứng minh KF//BC.
C H B A F K
a. Xét `\triangleAHB` và `\triangleAHC`
`AH` chung
`\hat{AHB}=\hat{AHC}=90^o`
`AB=AC`
`=>\triangleAHB=\triangleAHC(ch-cgv)`
b. Xét `\triangleFAH` và `\triangleKAH`
`AH` chung
`\hat{FAH}=\hat{KAH}`
`\hat{AFH}=\hat{AKH}=90^o`
`=>\triangleFAH=\triangleKAH(ch-gn)`
`=>HK=HF`
c. Theo phần b. `\triangleFAH=\triangleKAH`
`=>AF=AK`
`=>\triangleAFK` cân ở `A`
Ta có: `\triangleAFK` cân ở `A` và `\triangleABC` cân ở `A`
`=>\hat{AFK}=\hat{ABC}` mà hai góc này ở vị trí đồng vị \(\Rightarrow KF//BC\)
hình tự vẽ nhé.
xét: \(\Delta AHB\) VÀ \(\Delta AHC\) CÓ:
\(\widehat{ABH}=\widehat{ACH}\)(DO TAM GIÁC ABC CÂN TẠI A)
\(AB=AC\)(DO TAM GIÁC ABC CÂN TẠI A)
\(\widehat{AHB}=\widehat{AHC}=90^0\)
\(\Rightarrow\Delta AHB=\Delta AHC\left(ch-gn\right)\left(1\right)\)
b) TỪ (1)\(\Rightarrow BH=CH\)(2 cạnh tương ứng)
XÉT: \(\Delta KBH\)VÀ \(\Delta FCH\) CÓ:
\(BH=CH\left(cmt\right)\)
\(\widehat{BKH}=\widehat{CFH}=90^0\)
\(\widehat{KBH}=\widehat{FCH}\left(\widehat{B}=\widehat{C}\right)\)
\(\Rightarrow\Delta KBH=\Delta FCH\left(ch-gn\right)\)
\(\Rightarrow HK=HF;BK=FC\)(2 cạnh tương ứng)(đpcm)
c) ta có: \(AB=AC;;BK=FK\left(cmt\right)\)
\(\Rightarrow AB-BK=AC-FC\)
\(\Rightarrow AK=AF\Rightarrow\Delta AKF\) cân tại A
\(\Rightarrow\widehat{AKF}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
lại có \(\Delta ABC\)cân tại A\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)
TỪ (2)VÀ (3)\(\Rightarrow\widehat{AKF}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)
mà 2 góc này ở vị trí đồng vị \(\Rightarrow KF\\ BC\left(đpcm\right)\)
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
Suy ra: BA=BH
b: Ta có: ΔBAD=ΔBHD
nên DA=DH
hay D nằm trên đường trung trực của AH(1)
Ta có: BA=BH
nên B nằm trên đường trung trực của AH(2)
Từ (1) và (2) suy ra BD là đường trung trực của AH
hay BD⊥AH
Mình chỉ làm câu c, d thôi nha ( vì câu a, b bạn Nguyễn Lê Phước Thịnh làm rồi)
c) Xét tam giác ECK và tam giác ECA có:
EKC=EAC=90
EC cạnh chung
ECK=ECA ( vì CE là p/g của ABC)
=>Tam giác ECK=Tam giác ECA ( ch-gn)
=>CK=CA( 2 cạnh tương ứng)
Mà AB=HB( chứng minh a)
=>CK+BH=CA+AB
=>CH+KH+BK+HK=AC+AB
=>(BK+KH+CH)+HK=AC+AB
=>BC+HK=AB+AC (ĐPCM)
d) Ta có: \(\left\{{}\begin{matrix}CK=CA\left(theo.c\right)\\BA=BH\left(theo.a\right)\end{matrix}\right.\)=>Tam giác ACK cân tại C và tam giác ABH cân tại B
=>\(\left\{{}\begin{matrix}CAK=CKA=\dfrac{180-ACB}{2}\\BAH=BHA=\dfrac{180-ABC}{2}\end{matrix}\right.\)
Có: BAH+CAK=BAK+HAK+HAC+HAK=BAK+2HAK+HAC=\(\dfrac{180-ABC}{2}+\dfrac{180-ACB}{2}\)=\(\dfrac{360-\left(ABC+ACB\right)}{2}\)
=\(\dfrac{360-90}{2}=135\)
=>BAK+2HAK+HAC=135
Mà BAK+HAC=BAC-HAK=90-HAK
=>90-HAK+2HAK=135
=>90+HAK=135
=>HAK=45
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
Do đó: ΔABH=ΔACH
Suy ra: BH=CH
b: BH=CH=6cm
=>AH=8cm
c: Xét ΔAHE có
AK là đường cao
AK là đường trung tuyến
Do đó: ΔAHE cân tại A
hay AE=AH
d: Xét ΔADH có
AI là đường cao
AI là đườngtrung tuyến
Do đó:ΔADH cân tại A
=>AD=AH=AE
=>ΔADE cân tại A
a, Ta có : 4AB = 3CA => AB /3 = AC /4 => AB^2/9 = AC^2/16
Theo tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{AB^2}{9}=\dfrac{AC^2}{16}=\dfrac{BC^2}{25}=\dfrac{400}{25}=16\Rightarrow AB=12cm;AC=16cm\)
b, Ta có : BH + CH = BC = 25 cm
Theo định lí Pytago tam giác ABC vuông tại A
\(AB=\sqrt{BC^2-AC^2}=15cm\)
Theo định lí Pytago tam giác AHB vuông tại H
\(AH=\sqrt{AB^2-HB^2}=12cm\)
HÌnh bạn tự vẽ ra giấy nháp nhé
Dễ dàng tính được bc = 13
Áp dụng hệ thức lượng giác trong tam giác => AB^2 = BH. BC
Giải ra được BH = 25/13
Rồi sau đó tính được CH
Sau đó áp dụng định lí Pitago vào các tam giác vuông ABH và AHC để tính Ah và HK
Bạn có thể giải ra chi tiết được ko? Mình chưa học hệ thứ lượng giác nên bạn giải cách khác cho mình nhé.
Cảm ơn bạn rất nhiều.