Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C H
Ta có : \(AH.BC=AB.AC\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\left(1\right)\)
Xét \(\Delta AHC\)và \(\Delta ABC\)có :
\(\frac{AH}{AB}=\frac{AC}{BC}\left[theo\left(1\right)\right]\)
\(\widehat{C}\)chung
\(\Rightarrow\Delta AHC~\Delta ABC\left(c.g.c\right)\)
\(\Rightarrow\widehat{A}=\widehat{H}=90^o\)( hai góc tương ứng )
Hay \(\Delta ABC\)vuông tại A ( đpcm )
a) Có AH2=HF.HD \(\rightarrow\)\(\frac{AH}{HF}=\frac{HD}{AH}\)
Xét \(\Delta\)AHD và \(\Delta\)FHA có:
\(\widehat{AHD}=\widehat{FHA}=90^o\)
\(\frac{AH}{HF}=\frac{HD}{AH}\)( chứng minh trên)
\(\rightarrow\Delta\)AHD\(\approx\)\(\Delta\)FHA (c-g-c)
\(\rightarrow\)\(\widehat{ADH}=\widehat{FAH}\)( 2 góc tương ứng)
mà \(\widehat{ADH}+\widehat{HAD}=90^o\)
nên \(\widehat{FAH}+\widehat{HAD}=90^o\)
hay \(\widehat{FAD}=90^o\)\(\rightarrow\Delta\)ADF vuông tại A
nói thật chứ bài nay tui lop 7 lam dc
ban giup mk giai bai tren dc k mk dang can