Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ACED có
AD//CE
AD=CE
Do đó: ACED là hình bình hành
Suy ra: AC//ED
hay ED⊥AB
Đáp án:
Giải thích các bước giải:
a) tam giác ADC và tam giác ECD
AD=FC
chung cạnh CD
Góc D=góc C= 90 độ
suy ra tam giác ADC=tam giác ECD(c.g.c)
b) Ta có AD=CE
AD // CF ( cùng vuông góc BC)
suy ra ADEC là hình bình hành
suy ra DE // AC
mà AB vuông góc AC => DE vuông góc AB
c) Ta có ADEC là hình bình hành => góc DEC=góc DAC (1)
Ta có góc DAC+góc BAD= 90 độ
mà góc ABC+ góc BAD= 90 độ
=> góc DAC=ABC (2)
Từ (1) và (2) suy ra góc CED=góc ABC
cho mifh xin tích Ạ
Đáp án:
Giải thích các bước giải:
Hình bạn tự vẽ nhé!!
a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
BD là cạnh chung
Góc ABD = góc EBD (đường phân giác BD)
=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)
b). Gọi I là giao điểm của BD và AE.
Xét tam giác ABI và tam giác EBI có:
AB=EB (tam giác ABD=tam giác EBD)
Góc ABI=góc EBI (đường phân giác BD)
BI là cạnh chung.
=> tam giác ABI=tam giác EBI (c.g.c)
=> AI=EI => I là trung điểm của AE. (1)
=> Góc BIA=góc BIE
Mà góc BIA+góc BIE=180 độ (hai góc kề bù)
=> góc BIA=góc BIE=90 độ.
=> BI vuông góc với AE (2).
Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AE
d). Xét tam giác ADF vuông tại A và tam giác EDC vuông tại E có:
AD=ED (tam giác ABD = tam giác EBD)
AF=CE (GT)
=> tam giác ADF=tam giác EDC (hai cạnh góc vuông)
=> Góc ADF = góc EDC
cho xin tích ạ
Giải thích các bước giải:
Hình bạn tự vẽ nhé!!
a). Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E có:
BD là cạnh chung
Góc ABD = góc EBD (đường phân giác BD)
=> tam giác ABD=tam giác EBD (cạnh huyền-góc nhọn)
b). Gọi I là giao điểm của BD và AE.
Xét tam giác ABI và tam giác EBI có:
AB=EB (tam giác ABD=tam giác EBD)
Góc ABI=góc EBI (đường phân giác BD)
BI là cạnh chung.
=> tam giác ABI=tam giác EBI (c.g.c)
=> AI=EI => I là trung điểm của AE. (1)
=> Góc BIA=góc BIE
Mà góc BIA+góc BIE=180 độ (hai góc kề bù)
=> góc BIA=góc BIE=90 độ.
=> BI vuông góc với AE (2).
Từ (1) và (2) => BI là đường trung trực của đoạn thẳng AE
d). Xét tam giác ADF vuông tại A và tam giác EDC vuông tại E có:
AD=ED (tam giác ABD = tam giác EBD)
AF=CE (GT)
=> tam giác ADF=tam giác EDC (hai cạnh góc vuông)
=> Góc ADF = góc EDC
Đáp án:
Giải thích các bước giải:
a) tam giác ADC và tam giác ECD
AD=FC
chung cạnh CD
Góc D=góc C= 90 độ
suy ra tam giác ADC=tam giác ECD(c.g.c)
b) Ta có AD=CE
AD // CF ( cùng vuông góc BC)
suy ra ADEC là hình bình hành
suy ra DE // AC
mà AB vuông góc AC => DE vuông góc AB
c) Ta có ADEC là hình bình hành => góc DEC=góc DAC (1)
Ta có góc DAC+góc BAD= 90 độ
mà góc ABC+ góc BAD= 90 độ
=> góc DAC=ABC (2)
Từ (1) và (2) suy ra góc CED=góc ABC
cho xin tích ạ
b: Xét tứ giác ADEC có
AD//CE
AD=CE
Do đó: ADEC là hình bình hành
Suy ra: DE⊥AB
Xin lỗi mk ko biết vẽ hình trên máy
a) Xét tam giác ABD và tan giác EBD có :
BD chung
góc ABD = góc EBD ( vì BD la phân giác góc B )
góc A = góc E ( = 90 )
=> Tam giác ABD = tam giác EBD ( cạnh huyền- góc nhọn )
=> AD = DE
Chúc bạn hc tốt
a: Xét ΔADC vuông tại D và ΔECD vuông tại C có
AD=EC
DC chung
Do đó: ΔADC=ΔECD
b: Xét tứ giác ADEC có
AD//EC
AD=EC
Do đó: ADEC là hình bình hành
Suy ra: DE//AC
hay DE⊥AB