Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét 2 \(\Delta\) \(AMD\) và \(CMB\) có:
\(AM=CM\) (vì M là trung điểm của \(AC\))
\(\widehat{AMD}=\widehat{CMB}\) (vì 2 góc đối đỉnh)
\(MD=MB\left(gt\right)\)
=> \(\Delta AMD=\Delta CMB\left(c-g-c\right)\)
=> \(AD=BC\) (2 cạnh tương ứng).
b) Xét 2 \(\Delta\) \(BMA\) và \(DMC\) có:
\(BM=DM\left(gt\right)\)
\(\widehat{BMA}=\widehat{DMC}\) (vì 2 góc đối đỉnh)
\(MA=MC\) (vì M là trung điểm của \(AC\))
=> \(\Delta BMA=\Delta DMC\left(c-g-c\right)\)
=> \(\widehat{BAM}=\widehat{DCM}\) (2 góc tương ứng).
Mà \(\widehat{BAM}=90^0\left(gt\right)\)
=> \(\widehat{DCM}=90^0.\)
=> \(CD\perp MC\)
Hay \(CD\perp AC.\)
c) Theo câu b) ta có \(\Delta BMA=\Delta DMC.\)
=> \(\widehat{ABM}=\widehat{DCM}\) (2 góc tương ứng).
Mà 2 góc này nằm ở vị trí so le trong.
=> \(AB\) // \(CD\)
Hay \(AB\) // \(CN.\)
Có:
\(BN\) // \(AC\left(gt\right)\)
\(AB\) // \(CN\left(cmt\right)\)
=> \(AB=CN\) (tính chất đoạn chắn).
Xét 2 \(\Delta\) vuông \(ABM\) và \(CNM\) có:
\(\widehat{BAM}=\widehat{NCM}=90^0\)
\(AB=CN\left(cmt\right)\)
\(AM=CM\) (như ở trên)
=> \(\Delta ABM=\Delta CNM\) (2 cạnh góc vuông tương ứng bằng nhau) (đpcm).
Chúc bạn học tốt!
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
(Bạn tự vẽ hình giùm)
a/ \(\Delta ADM\)và \(\Delta CBM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMD}=\widehat{BMC}\)(đối đỉnh)
DM = BM (gt)
=> \(\Delta ADM\)= \(\Delta CBM\)(c. g. c) => AD = BC (hai cạnh tương ứng)
b/ \(\Delta ABM\)và \(\Delta CDM\)có: AM = CM (M là trung điểm của AC)
\(\widehat{AMB}=\widehat{CMD}\)(đối đỉnh)
BM = DM (gt)
=> \(\Delta ABM\)= \(\Delta CDM\)(c. g. c)
=> \(\widehat{BAM}=\widehat{MCD}=90^o\)(hai góc tương ứng)
=> AC _|_ CD (đpcm)
<Bạn kẻ hình giúp mình nha, mình không biết vào đâu để vẽ hình nữa>
a) Xét △BIC và △DIA có:
IC = IA (I: trung điểm AC)
^BIC = ^DIA (đối đỉnh)
IB = ID (gt)
=> △ICB = △DIA (c.g.c)
=> BC = AD (2 cạnh tương ứng)
=> đpcm
b) Xét △AIB và △CID có:
IA = IC (I: trung điểm AC)
^AIB = ^CID (đối đinh)
IB = ID (gt)
=> △AIB = △CID (c.g.c)
=> ^BAI = ^DCI (2 góc tương ứng)
=> ^DCI = 90o
=> CD \(\perp\)AC (đpcm)
c) Vì BM // AC, AC \(\perp\) CD
=> BM \(\perp\)MC => ^BMC = 90o
Xét △BAC và △MCB có:
^BAC = ^BMC (= 90o)
BC: chung
^MBC = ^BCA (BM // AC)
=> △BAC = △MCB (ch-gn)
=> AB = MC (2 cạnh tương ứng)
Vì AB = MC (cmt), AB = CD (△AIB = △CID)
=> CM = CD
Xét △MCI và △DIC có:
^MCI = ^DCI (= 90o)
IC: chung
CM = CD (cmt)
=> △MCI = △DIC (2 cave)
=> ^CIM = ^CID (2 góc tương ứng)
=> IC là phân giác ^MID (đpcm)
A B C D M I1 2 3 4 5
Cái hình mình cân nó bị lỗi ý bn tự sửa lại nha :D
a, Xét \(\Delta IBC\)và \(\Delta IDA\)có:
\(BI=DI\left(gt\right)\)
\(AI=CI\left(I-là-tr.điểm-của-AC\right)\)
\(\widehat{BIC}=\widehat{I2}\left(đ.đỉnh\right)\)
\(\Rightarrow\Delta IBC=\Delta IDA\left(c-g-c\right)\)
\(\Rightarrow AD=BC\left(2c.t.ứ\right)\)
b, Xét \(\Delta ABI\) và \(\Delta CDI\)có:
\(BI=DI\left(gt\right)\)
\(\widehat{I5}=\widehat{I4}\left(đ.đỉnh\right)\)
\(AI=CI\left(......\right)\)
\(\Rightarrow\Delta ABI=\Delta CDI\left(c-g-c\right)\)
\(\Rightarrow\widehat{BAI}=\widehat{DCI}=90^0\)
\(\Rightarrow CD\perp AC\)
c, Ta có: \(\hept{\begin{cases}BM//AC\\BA\perp AC\end{cases}}\Rightarrow BM\perp AB\)
Xét tứ giác \(ABMC\) có:
\(\widehat{A}=\widehat{B}=\widehat{M}=90^0\)
\(\Rightarrow ABMC\) là HCN
\(\Rightarrow AB=MC\)
Xét \(\Delta ABI\) và \(\Delta CMI\) vuông tại \(A;C\)có:
\(AB=CM\)
\(AI=CI\)
\(\Rightarrow\Delta ABI=\Delta CMI\left(2cgv\right)\)
\(\Rightarrow\widehat{I5}=\widehat{I3}\)
Mà: \(\widehat{I5}=\widehat{I4}\)
\(\Rightarrow\widehat{I3}=\widehat{I4}\)
\(\RightarrowĐpcm\)
Câu a:
Xét \(\Delta AMB\) và \(\Delta CMD\)
+ MB = MD [gt]
+ \(\widehat{AMB}=\widehat{CMD}\left(gt\right)\)
+ MA = MC [M là trung điểm AC]
=> \(\Delta AMB=\Delta CMD\left(c-g-c\right)\)
Câu b:
Xét \(\Delta AMD\) và \(\Delta CMD:\)
+ MB = MD [gt]
\(\widehat{AMD}=\widehat{CMB}\left(gt\right)\)
+ MA = MC [M là trung điểm AC]
\(\Rightarrow\Delta AMD=\Delta CMB\left(c-g-c\right)\)
=> \(\widehat{CBD}=\widehat{ADB}\)
Mà hai góc này ở vị trí so le trong
=> BC // AD