Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABM và ΔCKM có:
MA=MC(gt)
MB=MK(gt)
góc BMA= góc CMK( 2 góc đối đỉnh )
=>ΔABM=ΔCKM( c.g.c)
=> góc MAB= góc MCK=90o
=>KC vuông góc với AC
b) Xét ΔBMC và ΔKMA có:
MA=MC(gt)
góc BMC= góc AMK( 2 góc đối đỉnh )
=>ΔBMC=ΔKMA(c.g.c)
=> góc MBC= góc MKA
=>BC//AK
a) Ta có: A1ˆ+A2ˆ+A3ˆ=180o( góc bẹt )
⇒A1ˆ+A3ˆ=90o( do A2ˆ=90o ) (1)
Trong ΔAKC có: A3ˆ+C1ˆ=90o( do Kˆ=90o) (2)
Từ (1) và (2) ⇒A1ˆ=C1ˆ
Xét ΔAHB,ΔCKA có:
A1ˆ=C1ˆ(cmt)
AB = AC ( gt )
H^=K^=90o
⇒ΔAHB=ΔCKA( c.huyền - g.nhọn )
⇒AH=CK( cạnh t/ứng ) ( đpcm )
b) Vì ΔAHB=ΔCKA
⇒BH=AK,AH=CK( cạnh t/ứng )
Ta có: HK=AK+AH=BH+CK(đpcm)
Vậy...
Chúc bạn học tốt
A K M I C H B N
a)
Ta có nối K với M
=> Xét t/gMCK và t/gMHC ta có:
CK=CH (gt) hay ^KCM=^MCH (gt)
MC (cạnh chung)
=>t/gMCK = t/gMCH (c.g.c)
=>MK=MH ( tương ứng)
đpcm.
b) Tiếp tục nối K và H
Gọi I là giao điểm của CM và KH
Xét t/gICK và t/gICH ta có:
CK=CH (gt) hay ^HCM=^CMK (gt)
CI (cạnh chung)
=>t/gICK=t/gICH (c.g.c)
=>^CIK=^CIH( tương ứng)
Mà ^CIK+^CIH=180o( góc kề bù)
=>^CIK=^CIH=90o
=>CI_|_HK
=>CM_|_HK
đpcm.
c) Quan sát hình ta thấy ^CMH=65o=^CMN=65o (1)
Vì ^KCM+^MCN=90o
=>^MCN=90o-^KCM
=>^MCN=90o-35o
=>^MCN=65o(2)
Từ (1) và (2) vì ^NMC=^NCM => t/gNMC là t/g cân.
đpcm.
A B C M H
Xét tam giác ABC vuông tại A.
Theo định lí Pytago,ta có:\(AB^2+AC^2=BC^2\)
\(\Rightarrow AC^2=BC^2-AB^2=\left(CH+BH\right)^2-\left(AM+BM\right)^2\)
Gọi độ dài CH là a; BH là b. Đặt AM = BM = c (a,b,c > 0)
\(=\left(a+b\right)^2-\left(2c\right)^2=\left(a+b\right)^2-4c^2\)
Điều cần c/m tương đương với: \(a^2-b^2=\left(a+b\right)^2-4c^2\) (a,b,c > 0)
\(\Leftrightarrow a^2-b^2=a^2+2ab+b^2-4ac\)
\(\Leftrightarrow a^2-b^2-a^2-2ab-b^2-4ac=0\)
\(\Leftrightarrow-2ab-4ac=0\Leftrightarrow-2\left(ab+2ac\right)=0\)
\(\Leftrightarrow ab+2ac=0\) (vô lí,vì a,b,c > 0 nên \(ab+2ac>0\))
Vậy đề sai.
đề đúng :))
A B C M H
áp dụng định lí pytago vào tam giác vuông CMA. ta có:
CA2+AM2=CM2=> AM2=CM2-CA2 =MB2(vì MB=MA) (1)
áp dụng định lí pytago vào tam giác vuông CHM. ta có:
CH2+HM2=CM2=> CM2-CH2=HM2(2)
áp dụng định lí pytago vào tam giác vuông MHB. ta có:
MH2+HB2=MB2 (3)
từ (1), (2), (3)=> CM2-CH2+HB2=CM2-CA2
=> -CH2+HB2=-CA2 => CA2=CH2-HB2(đpcm)