Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Trong tứ giác FAEB: FD = DE, AD = DB => FAEB là hình bình hành
=> FA = BE và FA // BE
hay FA = EC và FA // EC
=> ACEF là hình bình hành
a: Xét ΔABC có
E là trung điểm của BC
D là trung điểm của AB
Do đó: ED là đường trung bình
=>ED//AC và ED=AC/2
Xét tứ giác ADEC có DE//AC
nên ADEC là hình thang
mà \(\widehat{CAD}=90^0\)
nên ADEC là hình thang vuông
b: Xét tứ giác ACEF có
EF//AC
EF=AC
Do đó: ACEF là hình bình hành
(Hình Tự vẽ)
Vì tam giác ABC có \(\widehat{A}=90\)
Mà AE là đường trung tuyến ( Vì E là trung điểm BC )
nên AE là đường trung tuyến ứng với cạnh huyễn
Suy ra \(AE=\frac{BC}{2}\)
hay AE = BE=EC (1)
Mà AE=ED (2)
Từ (1), và (2) suy ra AE=EB=EC=ED
Vì tứ giác ABDC có các đường chéo cắt nhau tại trung điểm mỗi đường và chúng đều bằng nhau
nên ABCD là hình chữ nhật
b, Vì EB=EC;FB=FK
nên EF là đường trung bình tam giác KBC
Suy ra EF//AC (1)
và EF=KC/2=AK=AC(2)
Từ (1) và (2) suy ra EF//AC VÀ EF=AC
Vậy ACEF là hình bình hành