K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 1 2016

45

28 tháng 1 2016

sai đê chăc là DE=7cm bạn coi lại xem

13 tháng 1 2017

E A B C 7cm 12cm có công thức : BC^2=BA^2+AC^2 (định lý pi-ta-go) nên 19^2=AB^2 + AC^2

31 tháng 3 2017

hình tự vẽ: 

xét hai tam giác vuông ABE và DBE:

ab=ad(gt); be là cạnh huyền chung 

=>\(\Delta\) ABE = \(\Delta\)DBE

mình sẽ giải tiếp

31 tháng 3 2017

a) theo đinh j lý pitago : tam giác abc vuông tại A 

=> \(AB^2+AC^2=BC^2\)THAY SỐ TA ĐƯỢC \(5^2+7^2=BC^2\) TA ĐƯỢC \(74=BC^2\) =>BC = 

8.6023

1 tháng 5 2018

a, xét tam giác ABC theo định lý py _ta _go ta có :

\(^{BC^2=AC^2+AB^2}\)

\(BC^2=5^2+7^2\)

\(^{BC^2=25+49}\)

\(^{BC^2=74}\)

BC=\(\sqrt{74}\)

b,xét tam giác vuông ABE và tam giác vuông DBE ta có:

BA=DB(gt)

BE chung

=}tam giác ABE=tam giác DBE(ch_cgv)

=}EA=ED (2 cạnh tương ứng)

c,xét tam giác vuông AEF và tam giác vuông  DEC ta có:

AE=ED(cm câu b)

E1=E2 (đối đỉnh)

=}tam giác AEF và tam giác DEC (gn_cgv)

=}EF=EC (2 cạnh tương ứng)

d,Ta có :BA =DA (gt)

           AE=ED(cm câu a)

=}BE là đường trung trực của AD

MÌNH TỰ LÀM KHÔNG BIẾT CÓ ĐÚNG HAY KHÔNG BẠN Ạ

1 tháng 5 2018

a) Xét tam giác ABC vuông tại A

có: \(AB^2+AC^2=BC^2\) ( py -  ta - go )

thay số: \(5^2+7^2=BC^2\)

\(BC^2=74\)

\(\Rightarrow BC=\sqrt{74}\)cm

b) Xét tam giác ABE vuông tại A và tam giác DBE vuông tại D

có: AB = DB ( gt)

AE là cạnh chung

\(\Rightarrow\Delta ABE=\Delta DBE\left(ch-cgv\right)\)

c) ta có: tam giác ABE = tam giác DBE ( phần b)

=> AE = DE ( 2 cạnh tương ứng)

Xét tam giác AEF vuông tại A và tam giác DEC vuông tại D

có: AE = DE ( cmt)

góc AEF = góc DEC ( đối đỉnh )

\(\Rightarrow\Delta AEF=\Delta DEC\left(cgv-gn\right)\)

=> EF = EC ( 2 cạnh tương ứng)

d) ta có: tam giác ABE = tam giác DBE ( phần b)

=> góc ABE = góc DBE ( 2 góc tương ứng )

Xét tam giác ABH và tam giác DBH

có: AB = DB ( gt)

góc ABE = góc DBE ( cmt)

BH là cạnh chung

\(\Rightarrow\Delta ABH=\Delta DBH\left(c-g-c\right)\)

=> AH = DH ( 2 cạnh tương ứng ) (1)

góc AHB = góc DHB ( 2 góc tương ứng )

mà góc AHB + góc DHB = 180 độ ( kề bù)

=> góc AHB + góc AHB = 180 độ

2. góc AHB = 180 độ

góc AHB = 180 độ :2

góc AHB = 90 độ

=> \(\Rightarrow BE\perp AD⋮H\) ( định lí vuông góc) (2)

Từ (1) ; (2) => BE là đường trung trực của AD ( định lí đường trung trực)