Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tg CMD và tag CAB
( góc CMD =góc CAB =90 độ )
góc CDM = góc CBA = 30 độ
=> tg CMD đồng dạng tg CAB ( TH1)
=> CM/CA = CD/CB => CM/CD = CA/CB
Xét tg CMA và tg CDB
Góc C chung
CM/CD=CA/CB (CMT)
=> Tg CMA đồng dạng tg CDB
=>S CMA / SCDB = ( CA/CB)2
Xét ΔABC vuông tại A có
\(AC=AB\cdot\cot\widehat{C}\)
\(\Leftrightarrow AC=\sqrt{192}\cdot\cot60^0=8\left(cm\right)\)
Ta có: ΔABC vuông tại A(gt)
nên \(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{8\sqrt{3}\cdot8}{2}=32\sqrt{3}\left(cm^2\right)\)
1. \(3x-15=2x\left(x-5\right)\)
\(\Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right).\left(3-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\3-2x=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=5\\x=\frac{3}{2}\end{cases}}\)
Vậy \(S=\left\{5;\frac{3}{2}\right\}\)
A B C H 9cm 12cm K I
a. Xét \(\Delta ABC\)và \(\Delta HAC\)có:
Góc C: chung (gt)
Góc HAC = Góc ABC ( cùng phụ với góc ACB)
\(\Rightarrow\Delta ABC\infty\Delta HAC\)
b.Ta có: \(\Delta ABC\infty\Delta HAC\)(cmt)
\(\Rightarrow\frac{BC}{AC}=\frac{AC}{HC}\Rightarrow AC^2=BC.HC=\left(BH+HC\right).HC=\left(9+12\right).12=252cm.\Rightarrow AC=\sqrt{252}=6\sqrt{7}\)
c b
AB^2+AC^2=BC^2
AC^2+ CĂN 192=4AC^2 (VÌ AC =1/2 BC)
SUY RA 3AC^2=CĂN 192
SUY RA AC^2=\(\frac{\sqrt{192}}{3}\)
SUY RA AC=