Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có hai trường hợp \(\widehat{IEC}=90^o\): hoặc \(\widehat{EIC}=90^o\)
TH1: Tam giác IEC vuông tại E
Đường tròn c: Đường tròn qua E với tâm I Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng i_1: Đoạn thẳng [B, A] Đoạn thẳng n: Đoạn thẳng [I, E] Đoạn thẳng p: Đoạn thẳng [I, C] Đoạn thẳng q: Đoạn thẳng [B, I] A = (-2.96, 2.66) A = (-2.96, 2.66) A = (-2.96, 2.66) C = (7.69, 2.52) C = (7.69, 2.52) C = (7.69, 2.52) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm E: Trung điểm của h Điểm E: Trung điểm của h Điểm E: Trung điểm của h Điểm I: Giao điểm đường của j, l Điểm I: Giao điểm đường của j, l Điểm I: Giao điểm đường của j, l
Do I là tâm đường tròn nội tiếp nên BI, CI là các phân giác.
Xét tam giác IBC, có IE là đường cao đồng thời là trung tuyến nên nó là tam giác cân tại I. Vậy \(\widehat{IBE}=\widehat{ICE}\Rightarrow2.\widehat{IBE}=2.\widehat{ICE}\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Vậy ABC là tam giác vuông cân hay \(\frac{AB}{AC}=1;\frac{AB}{BC}=\frac{AC}{BC}=\frac{1}{\sqrt{2}}.\)
TH2: Tam giác IEC vuông tại I.
Đường tròn d: Đường tròn qua D với tâm I Đoạn thẳng f: Đoạn thẳng [A, C] Đoạn thẳng h: Đoạn thẳng [B, C] Đoạn thẳng i_1: Đoạn thẳng [B, A] Đoạn thẳng n: Đoạn thẳng [I, E] Đoạn thẳng p: Đoạn thẳng [I, C] Đoạn thẳng q: Đoạn thẳng [B, I] Đoạn thẳng s: Đoạn thẳng [I, E'] A = (-2.96, 2.66) A = (-2.96, 2.66) A = (-2.96, 2.66) C = (7.69, 2.52) C = (7.69, 2.52) C = (7.69, 2.52) Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm B: Điểm trên g Điểm E: Trung điểm của h Điểm E: Trung điểm của h Điểm E: Trung điểm của h Điểm I: Giao điểm đường của j, l Điểm I: Giao điểm đường của j, l Điểm I: Giao điểm đường của j, l Điểm E': E đối xứng qua q Điểm E': E đối xứng qua q Điểm E': E đối xứng qua q
Ta thấy \(\widehat{ABC}+\widehat{ACB}=90^o\Rightarrow\widehat{IBC}+\widehat{ICB}=\frac{90^o}{2}=45^o\)
Xét tam giác IBC , ta có \(\widehat{BIE}=180^o-\left(\widehat{IBC}+\widehat{ICB}\right)-\widehat{CIE}=180^o-45^o-90^o=45^o\)
Trên AB lấy điểm E' sao cho BE' = BE. Ta thấy ngay \(\Delta BEI=\Delta BE'I\left(c-g-c\right)\Rightarrow\hept{\begin{cases}\widehat{BIE'}=\widehat{BIE}=45^o\\IE=IE'\end{cases}}\)
Vậy thì \(\widehat{E'IC}=180^o\Rightarrow\) E', I, C thẳng hàng.
Xét tam giác BE'C, theo tính chất đường phân giác trong tam giác thì
\(\frac{E'I}{IC}=\frac{BE'}{BC}=\frac{BE}{BC}=\frac{1}{2}\)
Vậy thì \(\frac{IE}{IC}=\frac{1}{2}\Rightarrow tan\widehat{BCE'}=\frac{1}{2}\Rightarrow\widehat{BCE}\approx26^o34'\)
\(\frac{AB}{AC}=tan\widehat{BCA}=\frac{4}{3}\Rightarrow\frac{AB}{BC}=\frac{4}{5};\frac{AC}{BC}=\frac{3}{5}.\)
(Đề hay quá!)
Gọi \(X\) là trung điểm \(BC\). CM được \(DF,AI,MN\) đồng quy tại điểm ta gọi là \(K\).
Theo tính chất đường trung bình ta có \(MN\) song song \(AB\).
Do tam giác \(ABC\) vuông tại \(A\) cũng suy ra \(AB\) song song với \(IE\).
Áp dụng định lí Thales liên tục ta có:
\(\frac{AN}{IE}=\frac{MN}{MI}=\frac{KA}{KI}=\frac{AP}{ID}\).
Do \(ID=IE\) nên \(AN=AP\). Kết thúc chứng minh.
I là tâm đường tròn nội tiếp tam giác và E là tiếp điểm
nên IE⊥AC, mà A^=90o suy ra IE//AB
⇒ANEI=AMEM
⇒AN=AM.EIEM=AC.EI2(AM−AE) (1)
Tứ giác AEIF là hình vuông nên AE=EI;
D, E, F là các tiếp điểm
⇒AE+CD+BD=12(BC+CA+AB)⇒AE=AC+AB−BC2,
thay vào (1) ta được ...