K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 5 2016

A B C M D

9 tháng 5 2016

a/ Xét tam giác AMC và tam giác DMB có:

 Góc AMC=BMD(đối đỉnh)

BM=MC(trung tuyến AM)

AM=MD(gt)

=> Tam giác AMC=tam giác DMB(c-g-c)

b/ Vì tam giác AMC=tam giác DMB(câu a)

=>Góc BDM=CAM(góc tương ứng)

=> BD song song với AC.

Mà AC vuông góc với AB(tam giác ABC vuông tại A)

=> BD vuông góc với AB.

=> Góc ABD=90 độ.

c/ Xét tam giác ABD và tam giác BAC có:

Góc BAC=ABD=90 độ

BD= AC(cạnh tương ứng của tam giác AMC=tam giác DMB)

AB chung

=> Tam giác ABD=tam giác BAC( c-g-c)

c/ AM là trung tuyến tam giác ABC

=> AM<BC

2 tháng 8 2015

a) tam giác MAC = tam giác BAD theo trường hợp cạnh góc cạnh

Có: MC = MB (AM trung tuyến)

AMC = DMB (2 góc đối đỉnh)

MA = MD (theo giả thiết)

=> 2 tam giác bằng nhau theo trường hợp cạnh góc cạnh

b) 

Tam giác ABC có góc A=90 độ

Suy ra: góc ACB+ góc CBA= 90 độ

Mà : góc ACB (hay góc ACM) = DBM (2 tam giác bằng nhau, chứng minh trên)

Suy ra: góc DBM + CBA = 90 độ

Hay DBA=90 độ

24 tháng 3 2021

thiếu mũ góc

 

20 tháng 1 2016
tyttyhhdfhdh
hhfh
hddfg

 

18 tháng 3 2020

A A A B B B C C C D D D M M M 1 1 2 1 2

a) Xét \(\Delta AMC\)và \(\Delta DMB\),ta có :

AM = DM(gt)

\(\widehat{M_1}=\widehat{M_2}\)(đối đỉnh)

CM = BM(vì M là trung điểm của BC)

=> \(\Delta AMC=\Delta DMB\left(c.g.c\right)\)

=> \(\widehat{C}=\widehat{B_1}\)(hai góc tương ứng)

     AC = BD(hai cạnh tương ứng)

Khi đó \(\widehat{ABD}=\widehat{B_1}+\widehat{B_2}=\widehat{B_1}+\widehat{C}=90^0\)

Vậy góc ABD = 900

b) Xét \(\Delta ABC\)và \(\Delta BAD\)có :

AB chung

AC = BD(cmt)

=> \(\Delta ABC=\Delta BAD\)(hai cạnh góc vuông)

c) Từ kết quả câu b)

=> BC = AD = 2AM <=> \(AM=\frac{1}{2}BC\)

18 tháng 3 2020

Em kiểm tra lại đề bài nhé! Trên tia đối tia AM hay tia đối tia MA ?

30 tháng 4 2019

A B C M D

a. Xét ΔAMC và ΔBMD, ta có:

BM = MC (gt)

∠(AMB) = ∠(BMC) (đối đỉnh)

AM = MD (gt)

Suy ra: ΔAMC = ΔDMB (c.g.c)

⇒ ∠(MAC) = ∠D (2 góc tương ứng)

Suy ra: AC // BD

(vì có 2 góc ở vị trí so le trong bằng nhau)

Mà AB ⊥ AC (gt) nên AB ⊥ BD.

Vậy (ABD) = 90o.

b. Xét ΔABC và ΔBAD ta có:

AB cạnh chung

∠(BAC) = ∠(ABD) = 90o

AC = BD (vì ΔAMC = ΔDMB)

Suy ra: ΔABC = ΔBAD (c.g.c)

c. Ta có: ΔABC = ΔBAD ⇒ BC = AD (2 cạnh tương ứng)

Mặt khác: AM = 1/2 AD

Vậy AM = 1/2 BC.

30 tháng 4 2019

qua essy