K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2016

ta có sina = AH/AC, cosa= CH/AH ,góc AMH =2a, cos2a =HM/AM =HM /a ,sin2a =AH/AM=AH/a.

=>2sina.cosa =2 . AH/AC.CH/AC= 2AH.CH/AC2 =2AH.CH/BC.CH=2AH/2a=AH/a =sin2a
(:p)

21 tháng 8 2019

Lam truoc cau a nhe,toi roi

a.Vi tu giac AFME co 3 goc vuong va 2 duong cheo vuong goc voi nhau nen AFDE la hinh vuong.

Goi giao diem giua 2 duong cheo AM va EF do la Q 

Suy ra:AQ=FQ nen tam giac AQF la tam giac vuong can hay \(\widehat{AQF}=45^0\left(1\right)\)

Tu giac QFKM co 3 goc vuong va MQ=FQ nen QFKM la hinh vuong.

Suy ra:FK=MK

Ta co:\(FK^2=MK.KC\Rightarrow FK=KC\)

Nen tam giac FKC la tam giac vuong can hay \(\widehat{C}=45^0\left(2\right)\)

Tu (1) va (2) suy ra:AM=MC

Hay AM la duong trung tuyen cua tam giac ABC.

ΔABC vuông tại A có AM là trung tuyến

nên MA=MB

mà MA=AB

nên MA=AB=MB

=>ΔMAB đều

=>góc B=60 độ

=>góc C=90-60=30 độ

sin C=sin 30=1/2

24 tháng 10 2015

cái ý thứ 3 còn lại bạn tự làm nhé, mình hơi lười (^^)

23 tháng 10 2015

vao fan so ng on thi bt se co bao nhieu ng on thoi *_*

a: Ta có: ΔABC vuông tại A 

mà AM là đường trung tuyến ứng với cạnh huyền BC

nên BC=2AM

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(AB^2=BH\cdot BC\)

hay \(AB^2=2\cdot BH\cdot AM\)

19 tháng 8 2023

Để chứng minh rằng √2/AD = 1/AB + 1/AC, ta có thể sử dụng định lý phân giác trong tam giác vuông.

Vì tam giác ABC vuông tại A, nên ta có đường phân giác AD chia góc BAC thành hai góc bằng nhau.

Áp dụng định lý phân giác, ta có:

AB/BD = AC/CD

Từ đó, ta có:

AB/AD + AC/AD = AB/BD + AC/CD

= (AB + AC)/(BD + CD)

= (AB + AC)/BC

= 1/BC (vì tam giác ABC vuông tại A)

Vậy, ta có:

1/AD = 1/AB + 1/AC

√2/AD = √2/AB + √2/AC

Vậy, chứng minh đã được hoàn thành.

Để chứng minh rằng nếu 1/ah^2 + 1/am^2 = 2/ad^2, ta cần có thông tin chi tiết về tam giác ABC và các điều kiện đi kèm.

2/AD^2=(căn 2/AD)^2

=(1/AB+1/AC)^2

\(=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}+2\cdot\dfrac{1}{AB\cdot AC}\)

\(=\dfrac{1}{AH^2}+2\cdot\dfrac{1}{AH\cdot BC}\)

\(=\dfrac{1}{AH^2}+\dfrac{1}{AM^2}\)