K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác ADMB có 

I là trung điểm của đường chéo AB(gt)

I là trung điểm của đường chéo MD(M và D đối xứng nhau qua I)

Do đó: ADMB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒AD//BM(Hai cạnh đối trong hình bình hành ADMB)

Ta có: ΔABC vuông tại A(gt)

mà AM là đường trung tuyến ứng với cạnh huyền BC(M là trung điểm của BC)

nên \(AM=\dfrac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(BM=CM=\dfrac{BC}{2}\)(M là trung điểm của BC)

nên AM=BM=CM

Hình bình hành ADBM có AM=BM(cmt)

nên ADBM là hình thoi(Dấu hiệu nhận biết hình thoi)

b) Sửa đề: E là giao điểm của AM và CD

Xét ΔABC có 

M là trung điểm của BC(gt)

I là trung điểm của AB(gt)

Do đó: MI là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒MI//AC và \(MI=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)

mà D∈MI và \(MI=\dfrac{MD}{2}\)(I là trung điểm của MD)

nên MD//AC và MD=AC

Xét tứ giác ACMD có 

MD//AC(cmt)

MD=AC(cmt)

Do đó: ACMD là hình bình hành(Dấu hiệu nhận biết hình bình hành)

⇒Hai đường chéo AM và CD cắt nhau tại trung điểm của mỗi đường(Định lí hình bình hành)

mà AM cắt CD tại E(gt)

nên E là trung điểm của AM

hay AE=EM(Đpcm)

c) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AB^2=BC^2-AC^2=5^2-4^2=9\)

hay AB=3(cm)

Ta có: \(MI=\dfrac{AC}{2}\)(cmt)

mà AC=4(cm)

nên \(MI=\dfrac{4}{2}=2\left(cm\right)\)

Xét ΔAMB có MI là đường cao ứng với cạnh AB(gt)

nên \(S_{ABM}=\dfrac{MI\cdot AB}{2}=\dfrac{2\cdot3}{2}=3\left(cm^2\right)\)

a: Xét tứ giác AMBD có 

I là trung điểm của AB

I là trung điểm của MD

Do đó: AMBD là hình bình hành

mà MA=MB

nên AMBD là hình thoi

10 tháng 12 2021

lm các ý còn lại ik bn

21 tháng 12 2021

a: Xét tứ giác ADBM có

I là trung điểm của AB

I là trung điểm của DM

Do đó: ADBM là hình bình hành

mà AM=BM

nên ADBM là hình thoi

23 tháng 2 2021

(x-5) (x-7)=0