Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BE là đường phân giác
=> AE/EC=AB/BC
=> AB=AE.BC/EC=6AE/3=2EC
có AB^2+AC^2=BC^2
<=>4AE^2+AE^2+2AE.AC+EC^2=BC^2
<=>5AE^2+6AE+9=36
<=> 5AE^2+6AE-27=0
<=> [AE=1,8
[AE=-3(loại)
=> AC=4,8 cm
AB=3,6 cm
A B C E 3 6
Xét tam giác ABC vuông tại A , BE là đường phân giác
\(\Rightarrow\frac{AB}{BC}=\frac{AE}{EC}\)mà : \(AB^2+AC^2=BC^2\Rightarrow AB^2=BC^2-AC^2\Rightarrow AB=\sqrt{36-AC^2}\)
\(AE=AC-EC=AC-3\)
\(\Rightarrow\frac{\sqrt{36-AC^2}}{6}=\frac{AC-3}{3}\)
\(\Rightarrow\frac{36-AC^2}{36}=\frac{\left(AC-3\right)^2}{9}\Rightarrow AC=\frac{24}{5}\)
Áp dụng định lí Py ta go ta có :
\(AB^2+AC^2=BC^2\Rightarrow AB^2=BC^2-AC^2=36-\frac{576}{25}=\frac{324}{25}\)
\(\Rightarrow AB=\frac{18}{5}\)
a, Tính được BC = 5cm, AH = 12 5 cm
b, Tìm được B ^ ≈ 53 , 13 0 , C ^ ≈ 36 , 87 0
c, Tính được
BE = 15 7 cm, CE = 20 7 cm và AE = 12 2 7 cm
Bài 2:
Ta có: \(\dfrac{AB}{AC}=\dfrac{5}{6}\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{25}{36}\)
\(\Leftrightarrow HB=\dfrac{25}{36}HC\)
Ta có: HB+HC=BC
\(\Leftrightarrow HC\cdot\dfrac{61}{36}=122\)
\(\Leftrightarrow HC=72\left(cm\right)\)
hay HB=50(cm)
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=10(cm)
Xét ΔABC có AD là đường phân giác ứng với cạnh BC
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
hay \(\dfrac{BD}{6}=\dfrac{CD}{8}\)
mà BD+CD=10cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{6}=\dfrac{CD}{8}=\dfrac{BD+CD}{6+8}=\dfrac{10}{14}=\dfrac{5}{7}\)
Do đó: \(BD=\dfrac{30}{7}cm;CD=\dfrac{40}{7}cm\)