Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: ΔABC vuông tại A
nên ΔABC nội tiếp đường tròn đường kính BC
=>O là trung điểm của BC
ΔOAD cân tại O
mà OI là đường cao
nên I là trung điểm của AD
Xét ΔABC vuông tại A có AI là đường cao
nên \(IA^2=IB\cdot IC\)
=>\(IA\cdot ID=IB\cdot IC\)
2:
a: AB=AC
OB=OC
Do đó: AO là đường trung trực của BC
=>AO vuông góc BC tại trung điểm của BC
=>AO vuông góc BC tại H và H là trung điểm của BC
b: Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{BOC}=2\cdot\widehat{BAC}=120^0\)
ΔOBC cân tại O
mà OH là đường cao
nên OH là phân giác của góc BOC
=>\(\widehat{BOH}=\dfrac{120^0}{2}=60^0\)
c: Xét ΔAHB vuông tại H có
\(sinB=\dfrac{AH}{AB}\)
=>\(\dfrac{6}{AB}=\dfrac{\sqrt{3}}{2}\)
=>\(AB=4\sqrt{3}\left(cm\right)\)
=>\(BC=4\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot4\sqrt{3}=12\sqrt{3}\left(cm^2\right)\)
S=40 nha