K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

b: ta có: ΔABE=ΔHBE

nên AE=HE; BA=BH

Suy ra: BE là đường trung trực của AH

11 tháng 6 2016

Hỏi đáp ToánHỏi đáp Toán

5 tháng 2 2017

Bạn giúp mình bài này được ko ?undefined

27 tháng 6 2020

a, xét tg ABE và tg HBE có BE chung

^EAB = ^EHB = 90 

^ABE = ^HBE do BE là pg của ^ABC (gt)

=> tg ABE = tg HBE (ch-gn)

27 tháng 6 2020

Cảm ơn bạn

28 tháng 10 2023

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác của góc HBA).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

30 tháng 4 2022

loading...

a) Xét \(\Delta ABE\) và \(\Delta HBE\):

BE chung

\(\widehat{ABE}=\widehat{EBH}\)

\(\widehat{EAB}=\widehat{EHB}=90^o\)

\(\Rightarrow\Delta ABE=\Delta HBE\left(ch-gn\right)\)

b) \(\widehat{EBH}=\dfrac{1}{2}\widehat{B}=30^o\)

\(\widehat{ACB}=90^o-\widehat{B}=30^o\)

\(\Rightarrow\Delta EBC\) cân tại E

Mà EH vuông góc BC

\(\Rightarrow HB=HC\)

c) \(\widehat{HEB}=90^o-\widehat{EBH}=60^o\)

\(KH//BE\Rightarrow\widehat{KHE}=\widehat{HEB}=60^o\)

\(\widehat{HEB}+\widehat{AEB}=60^o+60^o=120^o\)

\(\Rightarrow\widehat{KEH}=180^o-120^o=60^o\)

\(\Rightarrow\Delta EHK\)  đều

d) Theo phần a. \(\Delta ABE=\Delta HBE\Rightarrow AE=EH\)

\(\Delta IAE\) vuông ở A \(\Rightarrow IE>AE\)

\(\Rightarrow IE>EH\)

1 tháng 5 2022

a) Xét ΔABEΔABE và ΔHBEΔHBE:

BE chung

ˆABE=ˆEBHABE^=EBH^

ˆEAB=ˆEHB=90oEAB^=EHB^=90o

⇒ΔABE=ΔHBE(ch−gn)⇒ΔABE=ΔHBE(ch−gn)

b) ˆEBH=12ˆB=30oEBH^=12B^=30o

ˆACB=90o−ˆB=30oACB^=90o−B^=30o

⇒ΔEBC⇒ΔEBC cân tại E

Mà EH vuông góc BC

⇒HB=HC⇒HB=HC

c) ˆHEB=90o−ˆEBH=60oHEB^=90o−EBH^=60o

KH//BE⇒ˆKHE=ˆHEB=60oKH//BE⇒KHE^=HEB^=60o

ˆHEB+ˆAEB=60o+60o=120oHEB^+AEB^=60o+60o=120o

⇒ˆKEH=180o−120o=60o⇒KEH^=180o−120o=60o

⇒ΔEHK⇒ΔEHK  đều

d) Theo phần a. ΔABE=ΔHBE⇒AE=EHΔABE=ΔHBE⇒AE=EH

ΔIAEΔIAE vuông ở A ⇒IE>AE

 

 

23 tháng 4 2018

Giúp với

23 tháng 4 2018

hình bn tự vẽ nha

a)Xét    Tam giác ABE và  tam giác HBEcó

góc BAE= góc BHE(= 90 độ)

cạnh BE chung

góc ABE=góc HBE(giả thiết)

=>   Tam giác ABE = tam giác HBE(c/h-g/n)

b)  VÌ  Tam giác ABE = tam giác HBE(cmt)

=>BA=BH(2 cạnh tương ứng)

=>B thuộc đường trung trực của AH

=>BE là đường trung trực của đoạn thẳng AH

c) VÌ  Tam giác ABE = tam giác HBE(cmt)

=>AE=HE(2 cạnh tương ứng)

Xét tam giác AEK và tam giác HEC có

góc KAE=CHE(= 90 độ)

AE=HE

góc AEK=góc HEC(= 90 độ)

=>tam giác AEK = tam giác HEC(g.c.g)

=>Ek=EC(2 cạnh tương ứng)

29 tháng 7 2016

1. ΔABE = ΔHBE

Xét ΔABE và ΔHBE, ta có :

\widehat{BAE} =\widehat{BHE} =90^0 (gt)

\widehat{B_1} =\widehat{B_2}( BE là đường phân giác BE).

BE là cạnh chung.

=> ΔABE = ΔHBE

2. BE là đường trung trực của AH :

BA =BH và EA = EH (ΔABE = ΔHBE)

=> BE là đường trung trực của AH .

3. EK = EC

Xét ΔKAE và ΔCHE, ta có :

\widehat{KAE} =\widehat{CHE} =90^0 (gt)

EA = EH (cmt)

\widehat{E_1} =\widehat{E_2}( đối đỉnh).

=> ΔKAE và ΔCHE

=> EK = EC

4. EC > AC

Xét ΔKAE vuông tại A, ta có :

KE > AE (KE là cạnh huyền)

Mà : EK = EC (cmt)

=> EC > AC.

5 tháng 2 2017

Bạn giúp mình bài này được ko ?undefined

20 tháng 8 2015

a) xet tam giac ABE vuong tai A va tam giac HBE vuong tai H ta co

BE=BE ( canh chung) ; goc ABE= goc HBE ( BE la  tia p/g goc B)

--> tam giac ABE= tam giac HBE ( ch=gn)

b) ta co

BA=BH ( tam giac ABE= tam giac HBE)

EA=EH( tam giac ABE= tam giac HBE)

==> BE la duong trung truc cua AH

c) xet tam giac EKA va tam giac ECH   ta co

AE=EH ( tam giacABE= tam giacHBE) ; goc EAK= goc EHC (=90); goc AEK= goc HEC ( 2 goc doi dinh )

--> tam giac EKA = tam giac ECH ( g--c-g)

-->  EK=EC (2 canh tuong ung )

d) tu diem E den duong thang HC ta co :

EH la duong vuong goc ( EH vuong goc BC)

EC la duong xien

-> EH<EC ( quan he duong xien duong vuong goc)

ma EH= AE ( tam giac ABE= tam giac HBE)

nen AE < EC

 

3 tháng 5 2017

Cho tam giác ABC vuông tại a ; đường phân giác BE. kẻ EH cuông góc BC(H thuộc BC) Gọi K là giao điểm của AB và HE . Chứng minh rằng  

1) Tam giác ABE=tam giác HBE

2) BE là đường trung trực của đoạn thẳng AH; Chứng minh BE vuông góc KC

3) AE<EC