K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

a) Xét tam giác ABD và tam giác BHD có:

\(\widehat{BAD}=\widehat{BHD}=90^0\)

\(\widehat{ABD}=\widehat{HBD}\)(giả thiết)

BD - cạnh chung

\(\Rightarrow\)tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn)

\(\Rightarrow AD=HD\)(2 cạnh tương ứng)

b) Kéo dài BD cắt KC tại I

Xét tam giác ADK và tam giác HDC có:

AD = HD (theo chứng minh câu a)

\(\widehat{DAK}=\widehat{DHC}=90^0\)

\(\widehat{ADK}=\widehat{HDC}\)(2 góc đối đỉnh)

\(\Rightarrow\)tam giác ADK = tam giác HDC (g - c - g)

\(\Rightarrow AK=HC\)

Ta có: BK = AB+AK

         BC = BH + HC

\(\Rightarrow BK=BC\)

Xét tam giác BKI và tam giác BIC có:

BI - cạnh chung

\(\widehat{KBI}=\widehat{CBI}\)(gt)

BK = BC (chứng minh trên)

\(\Rightarrow\)tam giác BKI = tam giác BCI (c - g - c)

\(\Rightarrow\widehat{BIK}=\widehat{BIC}\)(2 góc tương ứng)

\(\Rightarrow IK=IC\)(2 cạnh tương ứng)

\(\Rightarrow\widehat{BKI}=\widehat{BCI}\)(2 góc tương ứng)

\(\widehat{BIK}+\widehat{BIC}=180^0\)

\(\Rightarrow\widehat{BIK}=\widehat{BIC}=\frac{1}{2}180^0=90^0\)

Vậy BD vuông góc với KC tại I

c) Ta có: tam giác BDK = tam giác BDC (c - g - c) (bạn tự chứng minh nhé)

\(\Rightarrow\widehat{BKD}=\widehat{BCD}\)(2 góc tương ứng)

\(\widehat{BKI}+\widehat{DKI}=\widehat{BKI}=\widehat{BCI}=\widehat{BCD}+\widehat{DCK}\)

\(\Rightarrow\widehat{DKC}=\widehat{DCK}\)

d) Ta có: AD + AK > KD (theo bất đẳng thức trong tam giác) (1)

KD > KI (theo quan hệ giữa đường vuông góc và đường xiên) (2)

Từ (1) và (2) \(\Rightarrow AD+AK>KI\)

\(KI=\frac{1}{2}KC\)

\(\Rightarrow AD+AK>\frac{1}{2}KC\)

\(\Rightarrow2\left(AD+AK\right)>KC\)

16 tháng 5 2017

a) vì D thuộc fân giác góc B => AD=DH

b) do KH vuông góc BC , CA vuông góc BK

=>giao điểm D là trực tâm của tam giác BKC

=>BD vuông góc KC

c) xét tam giác vuông KAD và tam giác vuông CHD có: 

AD=DH ; góc ADK=góc HDC (đối đỉnh) => hai tam giác vuông trên bằng nhau

=> DK = DC ( cạnh tương ứng)

=> tam giác KDC cân tại D

=>góc DKC = góc DCK

d)xét tam giác ADK có :AD+AK> KD  => 2(AD+AK)> 2KD   (1)

xét tam giác KDC có  : KD+DC >.KC

mà KD=DC => 2KD>KC         (2)

Từ (1) ;(2) ta có 2(AD+AK) > KC

VẾ (1) VÀ(2) LÀ DÙNG BẤT ĐẲNG THỨC TAM GIÁC ĐÓ BẠN!

b) Xét ΔADK vuông tại A và ΔHDC vuông tại H có 

DA=DH(cmt)

\(\widehat{ADK}=\widehat{HDC}\)(hai góc đối đỉnh)

Do đó: ΔADK=ΔHDC(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=HC(hai cạnh tương ứng) và DK=DC(hai cạnh tương ứng)

Ta có: BA+AK=BK(A nằm giữa B và K)

BH+HC=BC(H nằm giữa B và C)

mà BA=BH(ΔABD=ΔHBD)

và AK=HC(cmt)

nên BK=BC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DK=DC(cmt)

nên D nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của KC

hay BD\(\perp\)KC(đpcm)

a) Xét ΔADB vuông tại A và ΔHDB vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔADB=ΔHDB(cạnh huyền-góc nhọn)

Suy ra: AD=HD(hai cạnh tương ứng)

16 tháng 8 2015

a) cm tam giac ABD= tam giac BHD ( ch-gn)==> AD=HD

b)cm tam giac ADK= tam giac DHC ( g=c=g)

AD=HD ( cmt) goc DAK=goc DHC (=90) goc ADK= goc HDC ( 2 goc doi dinh )

--> AK= HC

ta co: BA=BH ( tam giac ABD= tam giac BHD)

         AK=HC ( cmt)

--> BA+AK- BH+HC--> BK=BC=> tam giac KBC can tai B

ma BD la tia phan giac ( gt) nen BD la duong cao)==> BD vuong goc KC

Neu truong k cho xai thi.goi Hla  giao diem BD va CK  cm tam giac KBH= tam giac CBH ( c=g=c)

--> goc BHK= goc BHC

ma goc BHK+ goc BHC=180 ( 2 goc ke bu)

nen BHK+BHK=180

-> 2 BHK=180-> BHK =180:2=90-> dpcm

c) xet tam goac DKC ta co : DK = DC ( tam giac ADK= tam giac DHC)

--> tam giac DKC can tai D -> dpcm

 

16 tháng 8 2015

a, Theo t/c của đường phân giác: Bất cứ điểm nào nằm trên đường phân giác thì cách đều 2 cạnh kề của đường thẳng ấy

=> AD=HD(đpcm)

b, Ta thấy tam giác ADK = tam giác DHC

=>AK=HC(2 cạnh tuong ứng)

=>BK=BC

=> tam giác BKC là tam giác cân

Suy ra BD cũng là đường cao , trung trực

Vậy BD vuông góc với KC (đpcm)

c, BD cắt KC tai M

Xét tam giác DMK ( M=90)và tam giác DMC(M=90)

CÓ: DM chung

DMK=DMC(=90)

KM=MC

Suy ra tam giác DMK=tam giác DMC(ch.gn)

=>DKC=DCK(đpcm)

10 tháng 5 2015

a, DA vuông  góc AB, DHvuông góc với BC, AB cắt BC tại B

BD là phân giác ABC 

=> DA=DH ( T/C phân giác của góc)

b, tg BAD =tgBHD( cạnh huyền- góc nhọn)

=> BA=BH     (1)

xét tg ADK và tg HDC có : A=H=90O

                                         AD=DH , góc ADK =  HDC (đối đỉnh)

=> tg ADK= HDC => AK=HC   (2) 

1,2 => BA+AK, = BH + HC hay BK= BC

=> tg BKC cân tại B 

có BD là p.giác góc KBC

=> BD vgoc KC ( t/c p.giac trong tg cân)

d, có AK+AD > KD (3)

HD+HC> DC  (4)

mà AK=HC , AD=DH do tg ADK = HDC

=> 2(AK +AD) >KD+DC > KC

(t/c tổng các cạnh trong tam giác)

c, 2 góc nào vậy bạn

10 tháng 5 2015

a) Xet tam giac ADB ( vuong tai A) va tam giac DBH ( vuong tai H) co :

 goc ABD = goc DBH (gt)

BD: canh chung

=> tam giac ADB = tam giac DBH ( canh huyen - goc nhon)

=> AD= DH

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

=>DA<DC

b: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

gócADK=góc HDC

=>ΔDAK=ΔDHC

=>DK=DC và AK=HC

=>BK=BC và góc DKC=góc DCK

c: BK=BC

DK=DC

=>BD là trung trực của KC

=>BD vuông góc KC

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

DO đó: ΔBAD=ΔBHD

Suy ra: DA=DH

b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó:ΔADK=ΔHDC

Suy ra: AK=HC

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

=>ΔBKC cân tại B

mà BD là đường phân giác

nên BD là đường cao

30 tháng 4 2022

Bạn ơi, câu b) lqf chứng minh BD vuông góc KC mà?