K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 5 2015

a, DA vuông  góc AB, DHvuông góc với BC, AB cắt BC tại B

BD là phân giác ABC 

=> DA=DH ( T/C phân giác của góc)

b, tg BAD =tgBHD( cạnh huyền- góc nhọn)

=> BA=BH     (1)

xét tg ADK và tg HDC có : A=H=90O

                                         AD=DH , góc ADK =  HDC (đối đỉnh)

=> tg ADK= HDC => AK=HC   (2) 

1,2 => BA+AK, = BH + HC hay BK= BC

=> tg BKC cân tại B 

có BD là p.giác góc KBC

=> BD vgoc KC ( t/c p.giac trong tg cân)

d, có AK+AD > KD (3)

HD+HC> DC  (4)

mà AK=HC , AD=DH do tg ADK = HDC

=> 2(AK +AD) >KD+DC > KC

(t/c tổng các cạnh trong tam giác)

c, 2 góc nào vậy bạn

10 tháng 5 2015

a) Xet tam giac ADB ( vuong tai A) va tam giac DBH ( vuong tai H) co :

 goc ABD = goc DBH (gt)

BD: canh chung

=> tam giac ADB = tam giac DBH ( canh huyen - goc nhon)

=> AD= DH

b) Xét ΔADK vuông tại A và ΔHDC vuông tại H có 

DA=DH(cmt)

\(\widehat{ADK}=\widehat{HDC}\)(hai góc đối đỉnh)

Do đó: ΔADK=ΔHDC(cạnh góc vuông-góc nhọn kề)

Suy ra: AK=HC(hai cạnh tương ứng) và DK=DC(hai cạnh tương ứng)

Ta có: BA+AK=BK(A nằm giữa B và K)

BH+HC=BC(H nằm giữa B và C)

mà BA=BH(ΔABD=ΔHBD)

và AK=HC(cmt)

nên BK=BC

Ta có: BK=BC(cmt)

nên B nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: DK=DC(cmt)

nên D nằm trên đường trung trực của KC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra BD là đường trung trực của KC

hay BD\(\perp\)KC(đpcm)

a) Xét ΔADB vuông tại A và ΔHDB vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)(BD là tia phân giác của \(\widehat{ABH}\))

Do đó: ΔADB=ΔHDB(cạnh huyền-góc nhọn)

Suy ra: AD=HD(hai cạnh tương ứng)

16 tháng 5 2017

a) Xét tam giác ABD và tam giác BHD có:

\(\widehat{BAD}=\widehat{BHD}=90^0\)

\(\widehat{ABD}=\widehat{HBD}\)(giả thiết)

BD - cạnh chung

\(\Rightarrow\)tam giác ABD = tam giác HBD (cạnh huyền - góc nhọn)

\(\Rightarrow AD=HD\)(2 cạnh tương ứng)

b) Kéo dài BD cắt KC tại I

Xét tam giác ADK và tam giác HDC có:

AD = HD (theo chứng minh câu a)

\(\widehat{DAK}=\widehat{DHC}=90^0\)

\(\widehat{ADK}=\widehat{HDC}\)(2 góc đối đỉnh)

\(\Rightarrow\)tam giác ADK = tam giác HDC (g - c - g)

\(\Rightarrow AK=HC\)

Ta có: BK = AB+AK

         BC = BH + HC

\(\Rightarrow BK=BC\)

Xét tam giác BKI và tam giác BIC có:

BI - cạnh chung

\(\widehat{KBI}=\widehat{CBI}\)(gt)

BK = BC (chứng minh trên)

\(\Rightarrow\)tam giác BKI = tam giác BCI (c - g - c)

\(\Rightarrow\widehat{BIK}=\widehat{BIC}\)(2 góc tương ứng)

\(\Rightarrow IK=IC\)(2 cạnh tương ứng)

\(\Rightarrow\widehat{BKI}=\widehat{BCI}\)(2 góc tương ứng)

\(\widehat{BIK}+\widehat{BIC}=180^0\)

\(\Rightarrow\widehat{BIK}=\widehat{BIC}=\frac{1}{2}180^0=90^0\)

Vậy BD vuông góc với KC tại I

c) Ta có: tam giác BDK = tam giác BDC (c - g - c) (bạn tự chứng minh nhé)

\(\Rightarrow\widehat{BKD}=\widehat{BCD}\)(2 góc tương ứng)

\(\widehat{BKI}+\widehat{DKI}=\widehat{BKI}=\widehat{BCI}=\widehat{BCD}+\widehat{DCK}\)

\(\Rightarrow\widehat{DKC}=\widehat{DCK}\)

d) Ta có: AD + AK > KD (theo bất đẳng thức trong tam giác) (1)

KD > KI (theo quan hệ giữa đường vuông góc và đường xiên) (2)

Từ (1) và (2) \(\Rightarrow AD+AK>KI\)

\(KI=\frac{1}{2}KC\)

\(\Rightarrow AD+AK>\frac{1}{2}KC\)

\(\Rightarrow2\left(AD+AK\right)>KC\)

16 tháng 5 2017

a) vì D thuộc fân giác góc B => AD=DH

b) do KH vuông góc BC , CA vuông góc BK

=>giao điểm D là trực tâm của tam giác BKC

=>BD vuông góc KC

c) xét tam giác vuông KAD và tam giác vuông CHD có: 

AD=DH ; góc ADK=góc HDC (đối đỉnh) => hai tam giác vuông trên bằng nhau

=> DK = DC ( cạnh tương ứng)

=> tam giác KDC cân tại D

=>góc DKC = góc DCK

d)xét tam giác ADK có :AD+AK> KD  => 2(AD+AK)> 2KD   (1)

xét tam giác KDC có  : KD+DC >.KC

mà KD=DC => 2KD>KC         (2)

Từ (1) ;(2) ta có 2(AD+AK) > KC

VẾ (1) VÀ(2) LÀ DÙNG BẤT ĐẲNG THỨC TAM GIÁC ĐÓ BẠN!

5 tháng 5 2017

Sửa đề .....Gọi K là giao điểm của HD và AB

a)Xét \(\Delta ABD\)VÀ \(\Delta HBD\)CÓ:

\(\widehat{BAD}=\widehat{BHD}=90^o\)

BD CHUNG

\(\widehat{ABD}=\widehat{HBD}\)

DO ĐÓ \(\Delta ABD\)=\(\Delta HBD\)(CH-GN)

SUY RA AD= HD

b)CÂU b BẠN CHỨNG MINH \(\Delta BCK\)CÂN TẠI B 

MÀ TRONG TAM GIÁC CÂN ĐƯỜNG PHÂN GIÁC ĐỒNG THỜI LÀ ĐƯỜNG TRUNG TRỰC

BẠN SUY RA ĐƯỢC BD VUÔNG GÓC CK

c) CỦA CÂU b

13 tháng 6 2018

K C B A D H

a) Xét tam giác ABD và tam giác HBD có :

\(\widehat{BAD}=\widehat{BHD}\left(=90^o\right)\)

\(\widehat{ABD}=\widehat{HBD}\)( BD là tia phân giác )

Chung BD

\(\Rightarrow\) tam giác ABD = tam giác HBD ( ch-gn )

\(\Rightarrow AD=DH\left(đpcm\right)\)

b) Xét tam giác DHC vuông tại H có  \(DC>DH\)( trong tam giác vuông cạnh huyền là cạnh dài nhất )

Mà  \(AD=DH\)( câu a )

\(\Rightarrow AD< CD\)

c)  \(\widehat{ABC}=180^o-90^o-30^o=60^o\)

Ta có BD là tia phân giác  \(\widehat{ABC\Rightarrow}\widehat{ABD}=\widehat{CBD}=\frac{60^o}{2}=30^o\)

Xét tam giác BDC có  \(\widehat{DBC}=\widehat{DCB}\left(=30^o\right)\)

\(\Rightarrow\)tam giác BDC cân tại D

Mà DH là đường cao  \(\left(DH\perp BC\right)\)

\(\Rightarrow\)DH cũng là đường trung tuyến tam giác BDC

\(\Rightarrow BH=HC\)

Xét tam giác KBH và tam giác KCH có :

\(\widehat{KHB}=\widehat{KHC}\left(=90^o\right)\)

BH = HC

Chung KH

\(\Rightarrow\)tam giác KBH = tam giác KCH ( c-g-c ) (1)

\(\Rightarrow\hept{\begin{cases}KB=KC\\\widehat{KBH}=\widehat{KCH}\left(=60^o\right)\end{cases}}\Leftrightarrow\Delta KBC\) đều

\(\Rightarrow\widehat{BKC}=60^o\)

Từ (1)  \(\Rightarrow\widehat{BKH}=\widehat{CKH}\)

\(\Rightarrow\widehat{BKH}=30^o\)

Xét tam giác BDK có  \(\widehat{DBK}=\widehat{BKD}\left(=30^o\right)\)

\(\Rightarrow\Delta BDK\)cân tại D

Mà AD là đường cao  \(\left(AD\perp BK\right)\)

\(\Rightarrow\)AD là trung tuyến tam giác BDK

\(\Rightarrow BA=AK\)

Xét  \(\Delta KBC\)

KH là trung tuyến ( BH = HC )

CA là trung tuyến ( BA = AK )

KH và CA cắt nhau tại D

\(\Rightarrow\)D là trọng tâm tam giác BKC

d) Ta có  \(\frac{KB}{2}=AK\)( do AB = AK )

\(AD+AK>\frac{KB}{2}\)

Mà KC = KB

\(\Rightarrow AD+AK>\frac{KC}{2}\left(đpcm\right)\)

Vậy ...

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

DO đó: ΔBAD=ΔBHD

Suy ra: DA=DH

b: Xét ΔADK vuông tại A và ΔHDC vuông tại H có

DA=DH

\(\widehat{ADK}=\widehat{HDC}\)

Do đó:ΔADK=ΔHDC

Suy ra: AK=HC

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

=>ΔBKC cân tại B

mà BD là đường phân giác

nên BD là đường cao

30 tháng 4 2022

Bạn ơi, câu b) lqf chứng minh BD vuông góc KC mà?

21 tháng 3 2023

a/ xét tam giác ABD vuông tại A và tam giác HBD vuông tại H, ta có:

BD là cạnh chung

góc B là góc chung ( gt )

do đó : tam giác ABD = tam giác HBD ( ch - gn )

=> AD = HD

 

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>AD=HD

b: Xét ΔBHK vuông tại H và ΔBAC vuông tại A có

BH=BA

góc HBK chung

=>ΔBHK=ΔBAC

=>BK=BC

=>ΔBKC cân tại B

mà BD là phân giác

nên BD vuông góc KC