Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C K M N
Áp dụng hệ thức lượng trong tam giác vuông ta có : AB^2 = BC . KB => \(AB=\sqrt{BC.KB}=\sqrt{5}.\)( cm )
Tương tự AC = \(2\sqrt{5}\)(cm )
b, Tứ giác AMKN có 3 góc vuông => AMKN là hình chữ nhật => MN = AK ( 2 đường chéo hcn bằng nhau )
=> MN = AK = ( AB . AC ) : BC = 2 ( cm )
Áp dụng hệ thức lượng:
\(AK^2=BK.CK=9.4=36\)
\(\Rightarrow AK=6\left(cm\right)\)
Áp dụng định lý Pitago:
\(AB^2=AK^2+BK^2\Rightarrow AB=\sqrt{AK^2+BK^2}=3\sqrt{13}\left(cm\right)\)
\(AC=\sqrt{AK^2+CK^2}=2\sqrt{13}\left(cm\right)\)
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Hình như ko đủ dữ kiện
Chỉ cần áp dụng hệ thức lượng trong tam giác vuông là ra liền (tự ghi rõ lời giải)
a)
\(AK^2=KC.BK=9.4\Rightarrow AK=6\left(cm\right).\)
b)
\(AB^2=AK^2+BK^2=6^2+4^2\Rightarrow AB=2\sqrt{13}\left(cm\right)\)(Định lý Pytago)
\(AC^2=AK^2+KC^2=6^2+9^2\Rightarrow AC=3\sqrt{13}\left(cm\right)\)