Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Xét tam giác $ABH$ và $CAH$ có:
$\widehat{AHB}=\widehat{CHA}=90^0$
$\widehat{ABH}=\widehat{CAH}$ (cùng phụ góc $\widehat{BAH}$)
$\Rightarrow \triangle ABH\sim \triangle CAH$ (g.g)
$\Rightarrow \frac{AB}{CA}=\frac{BH}{AH}=\frac{BH:2}{AH:2}=\frac{BP}{AQ}$
Xét tam giác $ABP$ và $CAQ$ có:
$\widehat{ABP}=\widehat{CAQ}$ (cùng phụ $\widehat{BAH}$)
$\frac{AB}{CA}=\frac{BP}{AQ}$ (cmt)
$\Rightarrow \triangle ABP\sim \triangle CAQ$ (c.g.c)
Ta có đpcm.
A B C H D E O P Q
câu a, dễ thấy tứ giác AEHD có 3 góc A=E=D=90 độ nên AEHD là hình chữ nhật, do đó AH=DE.
b.Xét tam giác BHD vuông tại D và có P là trung điểm BH do đso
\(\widehat{PDH}=\widehat{PHD}\)mà \(\widehat{PHD}=\widehat{QCE}\)( đồng vị)
và \(\widehat{QCE}=\widehat{QEC}\)
do đó ta có \(\widehat{PDH}=\widehat{QEC}\) mà HD//CE nên DP //QE . do đó DEPQ là hình thang
Bài giải
a) Xét tam giác ABH và CAH có:
\(\widehat{AHB}=\widehat{CHA}\left(=90^o\right)\)
\(\widehat{BAH}=\widehat{ACH}\left(=90^o-\widehat{ABC}\right)\)
\(\Rightarrow\Delta ABH\infty\Delta CAH\left(g.g\right)\)
\(\Delta ABH\infty\Delta CAH\left(g.g\right)\) (câu a) \(\Rightarrow\dfrac{AB}{AC}=\dfrac{BH}{AH}=\dfrac{BH\text{ : }2}{AH\text{ : 2}}=\dfrac{BP}{AQ}\)
Xét \(\Delta ABP \text{và }\Delta CAQ\) có: BPAQ=ABACBPAQ=ABAC
\(\widehat{CAH}=\widehat{ABH}\left(=90^o-\widehat{BAH}\right)\)
\(\Rightarrow\Delta ABP\infty\Delta CAQ\left(c.g.c\right)\)
b, Ta có: PQ là đg trung bình của\(\Delta ABH\Rightarrow\text{ }PQ\text{ // }AB\text{ }\Rightarrow\text{ }PQ\perp AC\)
Mà AH⊥⊥PC => Q là trực tâm của \(\Delta APC\)
\(\Rightarrow\text{ }AP\perp CQ\)
bạn tự vẽ hình nhé
a, xét tgABH và tg CAH có
\(\widehat{AHB}=\widehat{CHA}=90\)
\(\widehat{ABH}=\widehat{HAC}\)(cùng phụ với góc BAH)
suy ra chúng đồng dạng theo g.g
b, VÌ tgABH đồng dạng tg CAH
suy ra \(\frac{AB}{AC}=\frac{BH}{AH}=\frac{2BF}{2AE}=\frac{BF}{AE}\)
suy ra AB.AE=AC.BF
hình tự kẻ nha (((=
a)
+/ xét tam giác ABH và tam giác CAH có :
góc AHB = góc AHC = 90 độ
góc ABH = góc CAH ( cùng phụ góc BAH)
do đó tam giác ABH đồng dạng với tam giác CAH (trường hợp góc - góc )
=)) AB/AC=BH/AH (1)
ta có BH/AH=2PB/2AQ =PB/AQ (2)
(1),(2) =)) AB/AC=PB/AQ (3)
+/ xét tam giác ABP và tam giác CAQ có:
góc ABP = góc CAQ ( cùng phụ góc BAH )
PB/AQ=AB/AC ( do (3) )
dó đó tam giác ABP đồng dạng với tam giác CAQ
=)) (ĐPCM)
tạm thời được câu a) câu b) chưa nghĩ ra
nghĩ ra mình làm tiếp cho