K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2016

Hỏi đáp Toán

30 tháng 7 2016

Bạn tự vẽ hình nhé!

a, Xét Tg ABH và CBA có: góc ABC chung, BHA=BAC (=90)

=> ABH đồng dạng CBA (g.g)  => \(\frac{AB}{BH}=\frac{BC}{AB}\)

=> AB2=BH.BC

b, Sai đề nên mk sửa lại chút nhé >.^

Xét Tg AHB và CHA có:

  AHB=CHA (=90)

   BAH=ACH (=90-ABC)

=> AHB đồng dạng CHA  (g.g)

=>  \(\frac{AH}{BH}=\frac{HC}{AH}\)

=> AH2=BH.HC

c, Ta có: AB.AC=1/2.SABC

                AH.BC=1/2.SABC

=> AB.AC=BC.AH

d, Tương tự câu a, Tg AHC đồng dạng BAC

=> \(\frac{AC}{BC}=\frac{CH}{AC}\)

=> AC2=CH.BC

2 tháng 7 2017

Hỏi đáp ToánHỏi đáp Toán

2 tháng 7 2017

Đáng lẽ câu b nên cm AH2=HC.HB chứ ?

3 tháng 6 2017

a)c/M  AB^2 = BH . BC                                                  => AB/ BC = BH/AB

Xét tam giác AHB và tam giác CAB , ta có:                  => AB^2 = BH . BC

Góc ABC chung                                                            b ) C/m AH ^2 = AH . BH ( câu b có sai ko bn )

=> tam giác AHB ~ tam giác CAB                                c) ta có tam giác AHB ~ tam giác CAB ( cmt)

góc BHA =góc BAC                                                      => AB / BC = AH / AC => AB . AC = AH . BC

=> tam giác AHB ~ tam giác CAB

3 tháng 4 2017

B A C H

a)xét tam giác AHB và tam giác CAB có:

góc AHB=góc BAC=90 độ

góc B chung

\(\Rightarrow\Delta AHB\infty\Delta CAB\left(g.g\right)\\ \Rightarrow\dfrac{AB}{BC}=\dfrac{BH}{AB}\Rightarrow AB^2=BH\cdot BC\)(chỗ này là câu b luôn nhé)

c)xét tam giác AHC và tam giá BAC có:

góc AHC=góc BAC=90 độ

góc C chung

\(\Rightarrow\Delta AHC\infty\Delta BAC\left(g.g\right)\\ \Rightarrow\dfrac{AC}{BC}=\dfrac{HC}{AC}\Rightarrow AC^2=HC\cdot BC\)

d)từ câu b)(hay câu a) ta có \(\dfrac{AH}{AC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AH^2}{AC^2}=\dfrac{AB^2}{BC^2}\)(1)

từ câu c) ta có: \(\dfrac{AH}{AB}=\dfrac{AC}{BC}\Rightarrow\dfrac{AH^2}{AB^2}=\dfrac{AC^2}{BC^2}\) (2)

từ (1) và (2) \(\Rightarrow\dfrac{AH^2}{AC^2}+\dfrac{AH^2}{AB^2}=\dfrac{AB^2}{BC^2}+\dfrac{AC^2}{BC^2}\\ \Leftrightarrow^{ }AH^2\left(\dfrac{1}{AC^2}+\dfrac{1}{AB^2}\right)=\dfrac{AB^2+AC^2}{BC^2}=\dfrac{BC^2}{BC^2}=1\\ \Leftrightarrow AH^2\left(\dfrac{1}{AC^2}+\dfrac{1}{AB^2}\right)=1\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{AC^2}+\dfrac{1}{AB^2}\)

3 tháng 4 2017

a) xét tam giác HAC và tam giác ABC có

Góc H = Góc A (=90o)

Góc C chung

=> tam giác HAC ~tam giác ABC (g.g)

=>\(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)

=>AH.BC=AB.AC(đpcm)

b) Xét tam giác ABC và tam giác HBA có

Góc A=Góc H (=900)

Góc B chung

=>tam giác ABC ~tam giác HBA (g.g)

=>\(\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

=>AB2=BH.BC (1)

c)Tam giác HAC~ tam giác ABC (cmt)

=>\(\dfrac{AC}{HC}=\dfrac{BC}{AC}\)

=>AC2=HC.BC (2)

d) Từ (1) và (2) suy ra

\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{BC.BH}+\dfrac{1}{BC.CH}=\dfrac{CH+BH}{BC.BH.CH}=\dfrac{BC}{BC.BH.CH}=\dfrac{1}{BH.CH}\)=>\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{BH.CH}\left(3\right)\)

Từ (1)và (3) suy ra

\(\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2}\)(đpcm)

okokokokok

26 tháng 3 2017

hình bạn tự vẽ nhá :)

câu a

tam giác abc vuông tại a

\(=>S_{abc}=\dfrac{ab.ac}{2}=\dfrac{ah.bc}{2}\\ < =>2.S_{abc}=ab.ac=ah.bc\\ < =>ab.ac=ah.bc\)

câu b

xét tam giác hba và tam giác abc có

góc bha = góc bac = 90 độ

chung góc b

=> tam giác hba đồng dạng tam giác abc (gg) (1)

cmtt

=> tam giác hca đồng dạng với tam giác acb (2)

từ 1 và 2

=> tam giác hab đồng dạng tam giác hca (cùng động dạng tam giác abc) (3)

từ 1

\(\dfrac{ab}{bc}=\dfrac{bh}{ab}\\ =>ab.ab=bh.bc\)

câu c

từ 2

\(\dfrac{ac}{bc}=\dfrac{bh}{ac}\\ < =>ac.ac=bh.bc\)

câu d

từ 3

\(=>\dfrac{ah}{ch}=\dfrac{bh}{ah}\\ < =>ah.ah=ch.bh\)

\(\dfrac{1}{ah^2}=\dfrac{1}{ab^2}+\dfrac{1}{ac^2}\\ < =>\dfrac{1}{ah^2}=\dfrac{1}{bh.bc}+\dfrac{1}{ch.bc}\\ < =>\dfrac{1}{ah^2}=\dfrac{ch+bh}{bc.bh.ch}\\ < =>\dfrac{1}{ah^2}=\dfrac{bc}{bc.ah^2}\\ < =>\dfrac{1}{ah^2}=\dfrac{1}{ah^2}\)

=> đpcm

chúc may mắn :)

30 tháng 3 2018

a)  Xét   \(\Delta HAB\) và    \(\Delta ACB\)  có:

\(\widehat{AHB}=\widehat{CAB}=90^0\)

\(\widehat{HAB}=\widehat{ACB}\) cùng phụ với góc HAC

suy ra:  \(\Delta HAB~\Delta ACB\)

\(\Rightarrow\)\(\frac{AB}{CB}=\frac{BH}{AB}\)

\(\Rightarrow\)\(AB^2=BH.BC\)

b)  CM:   \(\Delta HAC~\Delta ABC\)

\(\Rightarrow\)\(\frac{AC}{BC}=\frac{HC}{AC}\)

\(\Rightarrow\)\(AC^2=BC.HC\)

25 tháng 3 2017

cảm ơn vì đã đăng bài giùm tui

26 tháng 3 2017

AB.AC do pn