Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc ABH chung
Do đo: ΔABH\(\sim\)ΔCBA
Suy ra: AB/CB=BH/BA=AH/CA
hay BH/HA=BA/CA(1)
b: Vì P là trung điểm của HB
và Q là trung điểm của HA
nên \(\dfrac{BP}{AQ}=\dfrac{HB}{AH}=\dfrac{AB}{AC}\)
a) Xét tam giác HAB và tam giác ABC , có :
A^ = H^ = 90o
B^ : góc chung
=> tam giác ABH ~ tam giác CBA ( g.g)
ADĐL pitago vào tam giác vuông ABC , có :
AB2 + AC2 = BC2
=> 62 + 82 = BC2
=> BC2 = 100
=> BC=10
Vì tam giác ABH ~ tam giác CBA ( cmt)
=> \(\dfrac{AB}{BC}\)= \(\dfrac{AH}{AC}\)
=> AH . BC = AB . AC
=> AH.10= 6.8
=> AH = 4,8
b)
Ta có :
A^1 + B^ = 90o
B^ + C^ = 90o
=> A^1 = C^
Xét tam giác HAC , và tam giác HAB , có :
A^1 = C^ ( cmt )
H^1 = H^2 = 90o
=> tam giác HAB ~ tam giác HCA ( g.g)
=> \(\dfrac{AH}{HC}\)= \(\dfrac{HB}{HA}\)=> AH2 = HC . HB
A B C D E H Q P O
a) Tg ADHE có \(\widehat{BAC}=\widehat{ADH}=\widehat{AEH}=90^o\)
=> Tg ADHE là hcn
=> DE = AH ( t/c hcn )
b) ΔECH vuông ở E => EQ = HQ = \(\dfrac{1}{2}HC\)
+)Tg ADHE là hcn
=> OH = OE = OD
+)Xét ΔQEO và ΔQHO có :
HQ = EQ ( cmt )
OH = OE ( cmt )
OQ chung
=> ΔQEO = ΔQHO ( c.c.c )
=> \(\widehat{OHQ}=\widehat{OEQ}\\ mà:\widehat{OHQ}=90^o\Rightarrow\widehat{QEO}=90^o\Rightarrow EQ\perp DE\)
cmtt , được ΔDPO = ΔHPO ( c.c.c ) => PD ⊥ DE
+) \(EQ\perp DE\\ PD\perp DE\) ( cmt ) ==> EQ // PD => Tg DEQP là hình thang
mà \(\widehat{PDE}=90^o\left(cmt\right)\) => Tg DEQP là hình thang cân
c) Dễ c/m được QO là đường trung bình ΔAHC
=> QO // AC mà AC ⊥ AB => QO ⊥ AB
=> QO là đường cao ΔABQ tại đỉnh B
+) ΔABQ có AH , QO lần lượt là đường cao của BQ và AB
mà \(AH\cap QOtạiO\)
=> O là trực tâm ΔABQ
d) Ta có :
\(S_{ABC}=\dfrac{1}{2}BC\cdot AH\\ =\dfrac{1}{2}\left(BH+CH\right)\cdot DE\\ =\dfrac{1}{2}\left(2DP+2EQ\right)\cdot DE\\ =\dfrac{1}{2}\cdot2\cdot\left(DP+EQ\right)\cdot DE\\ =\left(DP+EQ\right)\cdot ED\)
\(S_{DEQP}=\dfrac{1}{2}\left(DP+EQ\right)\cdot ED\)
mà SABC = ( DP + EQ ) . DE
=> SABC = 2SDEQP