K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 5 2018

a) Xét △ABC và △HBA có:

góc BAC = góc BHA = 90 độ

góc B chung

⇔ △ABC ∼ △HBA (g.g) (1)

⇔ AB/BC = HB/AB

⇒ AB2 = BC . BH (đpcm)

Xét △ABC và △HAC có:

góc BAC = góc AHC = 90 độ

góc C chung

⇔ △ABC ∼ △HAC (g.g) (2)

⇔ AB/BC = HA/AC

⇒ AB.AC=BC.AH (đpcm)

Từ (1),(2) ⇒ △ABH ∼ △CAH

⇒AH/BH=HC/AH

⇒ AH2= BH. HC (đpcm)

6 tháng 4 2018

a) Xét tam giác ABC và tam giác HAC có :

\(\widehat{BAC}=\widehat{AHC}\left(=90^o\right)\)

Chung \(\widehat{ACB}\)

\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HAC (g-g) (đpcm)

b) Xét tam giác ABC và tam giác HBA có :

\(\widehat{BAC}=\widehat{AHB}\left(=90^o\right)\)

Chung \(\widehat{ABC}\)

\(\Rightarrow\) tam giác ABC đồng dạng với tam giác HBA (g-g)

Mà tam giác ABC đồng dạng với tam giác HAC ( câu a )

Suy ra tam giác HBA đồng dạng với tam giác HAC

\(\Rightarrow\frac{HB}{HA}=\frac{HA}{HC}\Leftrightarrow HA^2=HB\times HC\left(đpcm\right)\)

c) Do \(AH^2=BH\times HC\)

\(\Leftrightarrow AH^2=9\times16\)

\(\Leftrightarrow AH^2=144\)

\(\Leftrightarrow AH=\sqrt{144}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Py-ta-go cho tam giác AHC vuông tại H ta được :

\(AH^2+HC^2=AC^2\)

\(\Leftrightarrow12^2+16^2=AC^2\)

\(\Leftrightarrow AC^2=400\)

\(\Leftrightarrow AC=\sqrt{400}\)

\(\Leftrightarrow AC=20\left(cm\right)\)

  Ta có : \(BC=BH+HC=9+16=25\left(cm\right)\)

Do BE là phân giác của \(\widehat{ABC}\)

\(\Rightarrow\frac{AE}{AB}=\frac{EC}{BC}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được :

\(\frac{AE}{AB}=\frac{EC}{BC}=\frac{AE+EC}{9+25}=\frac{AC}{34}=\frac{20}{34}=\frac{10}{17}\)

\(\Rightarrow\frac{EC}{BC}=\frac{10}{17}\Leftrightarrow\frac{EC}{25}=\frac{10}{17}\Leftrightarrow EC=\frac{250}{17}\left(cm\right)\)

Lại có : \(AE=AC-EC=20-\frac{250}{17}=\frac{90}{17}\left(cm\right)\)

Vậy độ dài đoạn thẳng EC là \(\frac{250}{17}\) cm ; AE là \(\frac{90}{17}\) cm

24 tháng 6 2019

a) \(\text{Xét }\Delta\text{ vuông }HBA\text{ và }\Delta\text{ vuông }ABC,\text{có: }\)

\(\widehat{BHA}=\widehat{BAC}=90^o\)

\(\widehat{ABC}\text{ chung }\)

\(\Rightarrow\Delta\text{ vuông }HBA\text{ đồng dạng }\Delta\text{ vuông }ABC\)

\(\Rightarrow\frac{HB}{AB}=\frac{HA}{AC}=\frac{AB}{BC}\)

\(\frac{BH}{AB}=\frac{AB}{BC}\Leftrightarrow BC.HB=AB^2\)

b) cm tương tự câu a:

t/g vuông BAC đồng dạng t/g vuông AHC

\(\Rightarrow\frac{AB}{AH}=\frac{BC}{AC}=\frac{AC}{HC}\)

\(\frac{BC}{AC}=\frac{AC}{HC}\Leftrightarrow AC^2=BC.HC\)

c) \(\frac{HA}{AC}=\frac{AB}{BC}\left(\text{câu a}\right)\)

\(\Leftrightarrow HA.BC=AC.AB\)

d) \(\left\{{}\begin{matrix}\frac{AH}{AC}=\frac{HB}{AB}\\\frac{AB}{AH}=\frac{AC}{HC}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AH=\frac{HB.AC}{AB}\\AH=\frac{AB.HC}{AC}\end{matrix}\right.\)

\(\Leftrightarrow AH^2=\frac{HB.AC}{AB}\cdot\frac{AB.HC}{AC}=HB.HC\)

25 tháng 2 2020

a) Xét tam giác ABC và tan giác HBA, ta có: 

\(\widehat{BAC}\)=\(\widehat{BHA}\)\(\left(=90^o\right)\)

\(\widehat{B}\)là góc chung

   => Tam giác ABC ~ tam giác HBA (g-g)

   =>\(\frac{AB}{BH}\)=\(\frac{BC}{BA}\) (tỉ số tương ứng)

Hay \(\frac{AB}{BH}\)=\(\frac{BC}{AB}\)

   <=> AB . AB = BC . BH

   <=> \(AB^2\)= BC . BH

b) Xét tam giác ABC và tam giác HAC, ta có:

\(\widehat{BAC}\)=\(\widehat{AHC}\)\(\left(=90^o\right)\)

\(\widehat{C}\)là góc chung

   => Tam giác ABC ~ tam giác HAC (g-g)

Mà tam giác ABC ~ tam giác HBA (cmt)

   => Tam giác HBA ~ tam giác HAC (tính chất)

  => \(\frac{HB}{HA}\)=\(\frac{HA}{HC}\)(tỉ số tương ứng)

Hay \(\frac{HB}{AH}\)=\(\frac{AH}{HC}\)

   <=> AH . AH = HB . HC

   <=> \(AH^2\)= HB . HC

c) Tam giac ABC vuong tai A co:

\(BC^2\)\(AB^2\)+\(AC^2\)(Pytago)

\(BC^2\)\(6^2\)+\(8^2\)

\(BC^2\)= 100

   <=> BC =\(\sqrt{100}\)(BC > 0)

   <=> BC = 10 (cm)

Mat khac: BC = HB + HC

    Tam giac HAC vuong tai H co:

\(AC^2\)=\(AH^2\)+\(HC^2\)(Pytago)

\(8^2\)= HB . HC + \(HC^2\)

64 = HC (HB + HC)

64 = HC . BC

64 = HC . 10

   => HC = 6,4 (cm)

Ma BC = HB + HC

   => 10 = HB + 6,4

   <=> HB = 3,6 (cm)

   Ta co:

\(AH^2\)= HB . HC (cmt)

   =>\(AH^2\)= 3,6 . 6,4

   <=> \(AH^2\)= 23,04

   <=> AH = \(\sqrt{23,04}\)(AH > 0)

   <=> AH = 4,8 (cm)

2 tháng 4 2018

a)  Xét \(\Delta ABC\) và      \(\Delta HBA\)  có:

\(\widehat{BAC}=\widehat{AHB}=90^0\)

\(\widehat{B}\)   chung

suy ra:   \(\Delta ABC~\Delta HBA\)

\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BC}{AB}\)

\(\Rightarrow\)\(AB^2=HB.BC\)

\(\Leftrightarrow\)\(6^2=HB.10\)

\(\Rightarrow\)\(HB=3,6\)

4 tháng 4 2018

bn ơi mk cần câu c cơ

Áp dụng định lí py ta go vào

\(\Delta\)ABC, ta có

 \(BC^2=AB^2+AC^2\)\(\Rightarrow BC^2=8^2+15^2\)\(\Rightarrow BC^2=64+225=289\)\(\Rightarrow BC=\sqrt[2]{289}\left(cm\right)\)