Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔABC vuông tại A có AH là đường cao
nên \(HB\cdot HC=AH^2\)
=>HB*HC=4^2=16
mà HB+HC=10cm
nên HB,HC là hai nghiệm của phương trình:
\(x^2-10x+16=0\)
=>(x-8)(x-2)=0
=>\(\left[{}\begin{matrix}x=8\\x=2\end{matrix}\right.\)
Do đó, chúng ta sẽ có 2 trường hợp là \(\left[{}\begin{matrix}BH=8cm;CH=2cm\\BH=2cm;CH=8cm\end{matrix}\right.\)
a) Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (ĐL Py-ta-go)
AB2 = 152 + 252
AB2 = 225 + 625
AB2 = 850
AB = \(\sqrt{850}\)(cm)
Xét tam giác ABC vuông tại A, có đường cao AH:
=> BA2 = BH.BC
850 = 25.BC
BC = 850:25
BC = 34
Xét tam giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2
342 = 850 + AC2
1156 - 850 = AC2
AC2 = 306
AC = \(\sqrt{306}\)(cm)
Ta có BC = BH + HC
34 = 25 + HC
HC = 34 - 25
HC = 9
b) Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (ĐL Py-ta-go)
122 = AH2 + 62
144 = AH2 + 36
AH2 = 144 - 36
AH2 = 108
AH = \(\sqrt{108}\)(cm)
Xét tam giác ABC vuông tại A, có đường cao AH:
=> BA2 = BH.BC
122 = 6.BC
144 = 6.BC
BC = 144:6
BC = 24 (cm)
Ta có BC = BH + HC
24 = 6 + HC
HC = 24 - 6
HC = 18
Xét tam giác ABC vuông tại A, ta có:
BC2 = AB2 + AC2 (ĐL Py-ta-go)
242 = 122 + AC2
AC2 = 242 - 122
AC2 = 576 - 144
AC2 = 432
AC = \(\sqrt{432}\)(cm)
AB/AC=3/4 nên HB/HC=9/16
=>HB=9/16HC
Ta có: \(AH^2=HB\cdot HC\)
=>\(HC^2\cdot\dfrac{9}{16}=36\)
=>HC=8(cm)
=>HC=4,5cm
áp dụng hệ thức lượng trong tam giác ABC
AN2=BH.BC
=>BC=AB2:BH=25
từ đó áp dụng pytago tính AC=20
lại áp dụng hệ thức lượng ta có;
AH.BC=AB.AC
=>AH=(AB.AC):BC=12
trong tam giác vuông trung tuyễn ứng vs cạnh huyền có số đo = nửa cạnh huyền
=> AM=12,5
=> HM=3,5 theo pytago
=> SAMH=1phần 2 AH.HM=21