...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2017

Bất đẳng thức trên là hiển nhiên với a, b dương bất kì (bđt Cô-si).

Vì \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)

<=> \(a+b-2\sqrt{ab}\ge0\)

<=> \(\sqrt{ab}\le\frac{a+b}{2}\)

5 tháng 6 2019

Ta thấy:

\(\left(a-b\right)^2\ge0\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow a^2+2ab+b^2\ge2ab+2ab\)

\(\Rightarrow\left(a+b\right)^2\ge4ab\)

\(\Rightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)

\(\Rightarrow\sqrt{\frac{\left(a+b\right)^2}{4}}\ge\sqrt{ab}\)

\(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

hay \(\sqrt{ab}\ge\frac{a+b}{2}\)

27 tháng 10 2015

Goij D là trung điểm của BC =>AD=BC/2=(a+b)/2


ma  AH=căn ab


va  AH</ AD

27 tháng 8 2019

Hình bn tự vẽ nha.

Gọi M là trung điểm của BC. Vì tam giác ABC vuông tại A và có cạnh huyền nên :

\(AM=\frac{BC}{2}=\frac{a+b}{2}\) (1)

Mặt khác ta có : \(AH^2=BH.CH\Rightarrow AH=\sqrt{ab}\) (2)

Ta luôn có :\(AH\le AM\) (3) ( quan hệ giữa đường xiên và hình chiếu)

Từ (1) (2) (3) => \(\sqrt{ab}\le\frac{a+b}{2}\) ( Đpcm)

2 tháng 7 2021

A B C H D E

a) Xét tam giác ABC vuông tại A có AH là đường cao => AB2 = BH.BC; AC2 = HC.BC (Hệ thức lượng trong tam giác vuông)

Do đó: \(\frac{AB^2}{AC^2}=\frac{HB.BC}{HC.BC}=\frac{HB}{HC}\)

b) Từ \(\frac{AB^2}{AC^2}=\frac{HB}{HC}\)=> \(\frac{AB^4}{AC^4}=\frac{HB^2}{HC^2}\)

Xét tam giác AHB vuông tại H có HD là đường cao => BH2 = BD.AB ( Hệ thức lượng)

Xét tam giác AHC vuông tại H có HE là đường cao => HC2 = EC.AC

Do đó: \(\frac{AB^4}{AC^4}=\frac{BD.AB}{EC.AC}\)=> \(\frac{AB^3}{AC^3}=\frac{BD}{EC}\)