Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(\dfrac{HB}{HC}=\dfrac{1}{3}\)
nên HC=3HB
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB^2=48\)
\(\Leftrightarrow HB=4\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=4\cdot HB=16\sqrt{3}\left(cm\right)\)
Bài 1:
ta có: \(AB=\dfrac{1}{2}AC\)
\(\Leftrightarrow\dfrac{HB}{HC}=\dfrac{1}{4}\)
\(\Leftrightarrow HC=4HB\)
Ta có: \(AH^2=HB\cdot HC\)
\(\Leftrightarrow HB=1\left(cm\right)\)
\(\Leftrightarrow HC=4\left(cm\right)\)
hay BC=5(cm)
Xét ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AB^2=HB\cdot BC\\AC^2=HC\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{5}\left(cm\right)\\AC=2\sqrt{5}\left(cm\right)\end{matrix}\right.\)
\(AB^2=BH.BC=\frac{1}{5}BC.BC\)
\(\Rightarrow BC=\sqrt{5AB^2}=10\left(cm\right)\)
a) Do AD là tia phân giác \(\widehat{BAC}\)
\(\Rightarrow\frac{AB}{AC}=\frac{BD}{DC}=\frac{36}{60}=\frac{3}{5}\)
Áp dụng hệ thức lượng trong tam giác ta có :
+) \(AB^2=BC.BH\Leftrightarrow BH=\frac{AB^2}{BC}\)
+) \(AC^2=BC.HC\Leftrightarrow CH=\frac{AC^2}{BC}\)
Ta có : \(\frac{HB}{HC}=\frac{AB^2}{BC}\div\frac{AC^2}{BC}=\frac{AB^2}{BC}.\frac{BC}{AC^2}=\frac{AB^2}{AC^2}=\frac{3^2}{5^2}=\frac{9}{25}\)
Vậy \(\frac{HB}{HC}=\frac{9}{25}\)
b) Xét \(\Delta AHB\)và \(\Delta CHA\)có :
\(\widehat{BHA}=\widehat{CHA}\left(=90^o\right)\)
\(\widehat{ABH}=\widehat{CAH}\)( cùng phụ với \(\widehat{ACB}\))
\(\Rightarrow\)\(\Delta AHB\)đồng dạng với \(\Delta CHA\)( g-g )
\(\Rightarrow\frac{AH}{CH}=\frac{HB}{HA}\Leftrightarrow AH^2=HB.HC\left(1\right)\)
Lại có \(\frac{HB}{HC}=\frac{9}{25}\Leftrightarrow\frac{HB}{9}=\frac{HC}{25}\)
Mà \(HB=HC=BC=96\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{HB}{9}=\frac{HC}{25}=\frac{HB+HC}{9+25}=\frac{96}{34}=\frac{48}{17}\)
\(\Rightarrow\hept{\begin{cases}HB=\frac{48}{17}\times9=\frac{432}{17}\\HC=\frac{48}{17}\times25=\frac{1200}{17}\end{cases}}\)
Thay vào (1) ta có : \(AH^2=\frac{432}{17}\times\frac{1200}{17}=\frac{518400}{289}\)
\(\Rightarrow AH=\sqrt{\frac{518400}{289}}=\frac{720}{17}\)
Vậy ...
Ta có:
\(\dfrac{HB}{HC}=\dfrac{1}{3}\Rightarrow HC=3HB\)
Áp dụng hệ thức lượng:
\(AH^2=BH.CH\Rightarrow144=BH.3BH=3BH^2\)
\(\Rightarrow BH^2=48\)
\(\Rightarrow BH=4\sqrt{3}\left(cm\right)\)
\(\Rightarrow CH=3BH=12\sqrt{3}\left(cm\right)\)
\(\Rightarrow BC=BH+CH=16\sqrt{3}\left(cm\right)\)