K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2023

A B C H M N K I O D

a/

Ta có

HI=CI (gt); AI=KI (gt) => ACKH là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AC//HK (Trong hbh 2 cạnh đối // với nhau)

b/

Ta có

\(HM\perp AB\left(gt\right);AC\perp AB\left(gt\right)\) => HM//AC

Mà HK//AC (cmt)

\(\Rightarrow HM\equiv HK\) (Từ 1 điểm ở ngoài 1 đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho) => M; K; H thẳng hàng

=> AC//MK => MNCK là hình thang

Ta có

AC//MK => AN//MH

\(AB\perp AC\left(gt\right);HN\perp AC\left(gt\right)\) => AB//HN => AM//HN

=> AMHN là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

\(\widehat{A}=90^o\)

=> AMHN là hình chữ nhật => AH=MN (trong HCN hai đường chéo bằng nhau)

Mà ACKH là hbh (cmt) => AH=CK (cạnh đối hbh)

=> MN=CK

=> hình thang MNCK có MN = CK => MNCK là hình thang cân

c/

Xét tg AHC có

OA=OH (Trong hình chữ nhật 2 đường chéo cắt nhau tại trung điểm mỗi đường)

HI=CI (gt)

=> D là trọng tâm của tg AHC \(\Rightarrow AD=\dfrac{2}{3}AI\)

Xét hình bình hành ACKH có

\(AI=KI\) (Trong hình bh 2 đường chéo cắt nhau tại trung điểm mỗi đường) \(\Rightarrow AI=\dfrac{1}{2}AK\)

\(\Rightarrow AD=\dfrac{2}{3}.\dfrac{1}{2}AK=\dfrac{1}{3}AK\Rightarrow AK=3AD\)

 

 

 

 

 

3 tháng 3 2020

Đề sai nhá bạn,câu a,b không nói nữa rồi,ý mình là câu c ấy :D

Nếu bạn không tiện dùng tay so sánh thì mình sẹ chứng minh cho bạn xem

Hạ CT vuông góc với MK

Theo tính chất hình chữ nhật thì MC=AT mà dễ dàng chỉ ra được AT < AK nên đề sai

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.a. Chứng minh tứ giác ABDC là hình chữ nhật.b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.c. Chứng minh tứ giác AEKC là hình bình hành.d. Tìm điều kiện để hình thoi AKBE là hình vuông.Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D...
Đọc tiếp

Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.

a. Chứng minh tứ giác ABDC là hình chữ nhật.

b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.

c. Chứng minh tứ giác AEKC là hình bình hành.

d. Tìm điều kiện để hình thoi AKBE là hình vuông.

Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.

a. Chứng minh: M và E đối xứng nhau qua AB.

b. Chứng minh: AMBE là hình thoi.

c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM

Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.

a. Chứng minh tứ giác BHCD là hình bình hành. 

b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH

1

a)Ta có 

BK=KC (GT)

AK=KD( Đối xứng)

suy ra tứ giác ABDC là hình bình hành (1)

mà góc A = 90 độ (2)

từ 1 và 2 suy ra tứ giác ABDC là hình chữ nhật

b) ta có

BI=IA

EI=IK

suy ra tứ giác AKBE là hình bình hành (1)

ta lại có 

BC=AD ( tứ giác ABDC là hình chữ nhật)

mà BK=KC

      AK=KD

suy ra BK=AK (2)

Từ 1 và 2 suy ra tứ giác AKBE là hình thoi

c) ta có

BI=IA

BK=KC

suy ra IK là đường trung bình

suy ra IK//AC

          IK=1/2AC

mà IK=1/2EK

Suy ra EK//AC 

           EK=AC

Suy ra tứ giác  AKBE là hình bình hành

B A C D E K