K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét tứ giác AEHF có 

\(\widehat{FAE}=90^0\)

\(\widehat{AFH}=90^0\)

\(\widehat{AEH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ΔEHB vuông tại E(gt)

mà EN là đường trung tuyến ứng với cạnh huyền HB(N là trung điểm của HB)

nên \(EN=\dfrac{HB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

a: Xét tứ giác AEHF có 

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

AH
Akai Haruma
Giáo viên
4 tháng 1 2023

Lời giải:
a. Tứ giác $AEHF$ có 3 góc vuông: $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.

b. Vì $I, H$ đối xứng với nhau qua $E$ nên $E$ là trung điểm của $IH$

Xét tam giác $AIE$ và $AHE$ có:

$AE$ chung

$IE=EH$ (do $E$ là trung điểm $IH$)

$\widehat{AEI}=\widehat{AEH}=90^0$

$\Rightarrow \triangle AIE=\triangle AHE$ (c.g.c)

$\Rightarrow \widehat{IAE}=\widehat{HAE}(1)$

Tương tự: $\triangle AHF=\triangle AKF$ (c.g.c)

$\Rightarrow \widehat{KAF}=\widehat{HAF}(2)$

Từ $(1); (2)\Rightarrow \widehat{IAE}+\widehat{KAF}+\widehat{BAC}=\widehat{HAE}+\widehat{HAF}+\widehat{BAC}$

Hay $\widehat{IAK}=\widehat{BAC}+\widehat{BAC}=90^0+90^0=180^0$

$\Rightarrow I,A,K$ thẳng hàng.

a: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=6\left(cm^2\right)\)

=>HA*BC=12

=>HA=2,4cm

b: Xét tứ giác AEHF có

góc AEH=góc AFH=góc FAE=90 độ

nên AEHF là hình chữ nhật

c: góc IEF=góc IEH+góc FEH

=góc IHE+góc FAH

=góc HAC+góc HCA=90 độ

=>IE vuông góc EF(1)

góc KFE=góc KFH+góc EFH

=góc KHF+góc BAH

=góc BAH+góc HBA=90 độ

=>KF vuông góc với FE(2)

Từ (1), (2) suy ra KIEF là hình thang vuông