Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{AB}{AC}=\dfrac{3}{4}\)
\(\Rightarrow AC=\dfrac{4AB}{3}=20\left(cm\right)\)
\(\Delta ABC-\text{vuông}-\text{tại}-A-\text{có}-AH-\text{là}-\text{đ.c.}\)
(+) \(\Rightarrow BC^2=AB^2+AC^2\left(ptg\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=25\left(cm\right)\)
(+) \(\Rightarrow AC^2=CH\times BC\left(htl\right)\)
\(\Rightarrow CH=\dfrac{AC^2}{BC}=16\left(cm\right)\)
M là t.đ. của BC (AM là đ.t.tn. của \(\Delta ABC\))
=> CM = BC : 2 = 12,5 (cm)
CH - CM = 3,5 (cm)
vì tam giác ABC vuông tại A trung tuyến AD nên AD=DB=DC=1/2 BC=1/2 *32=16
Ta có: \(\frac{AH}{AD}=\frac{3}{4}\Leftrightarrow\frac{AH}{16}=\frac{3}{4}\)
\(\Rightarrow AH=\frac{3\cdot16}{4}=12\)
Lại có: \(AH^2=BH\cdot CH=\left(BD-HD\right)\left(DC+HD\right)\)\(=\left(16-HD\right)\left(16+HD\right)=16^2-HD^2\)
\(\Leftrightarrow12^2=16^2-HD^2\Rightarrow HD=\sqrt{16^2-12^2}=\sqrt{112}=4\sqrt{7}\)
Diện tích AHD=\(\frac{1}{2}\cdot AH\cdot HD=\frac{1}{2}\cdot12\cdot4\sqrt{7}=24\sqrt{7}\)
b: \(BE\cdot CF\cdot BC\)
\(=\dfrac{BH^2}{AB}\cdot\dfrac{CH^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AH}=AH^3\)
c: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)