K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

hay BC=15(cm)

Xét ΔABC có AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{9}=\dfrac{CD}{12}\)

mà BD+CD=15cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được

\(\dfrac{BD}{9}=\dfrac{CD}{12}=\dfrac{15}{21}=\dfrac{5}{7}\)

Do đó: \(BD=\dfrac{45}{7}cm;CD=\dfrac{60}{7}cm\)

13 tháng 10 2021

 

1542966759_7.jpg

20 tháng 10 2017

mn giúp em làm ý e vs ạ,thanks mn nhiều ^^

12 tháng 8 2016

tập hợp mẹ Lê Nguyên Hạo

90;89;87;.......

 

19 tháng 8 2016

Pytago ra BC=35

Áp dụng hệ thức lượng ra:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{441}+\frac{1}{784}\Rightarrow AH=\frac{84}{5}\)

AB2=HB.BC→HB=441:35=12.6

HC=BC-HB=35-12.6=22.4

b, Tính theo ct thôi vì biết các cạnh rồi.

c,Theo t/c đường phân giác có

\(\frac{BD}{CD}=\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{BD}{CD}=\frac{3}{4}\Rightarrow\frac{BD+CD}{CD}=\frac{3+4}{4}\Rightarrow\frac{BC}{CD}=\frac{7}{4}\Rightarrow CD=20;BD=15\)

 

2 tháng 12 2021

a) Áp dụng HTL :

\(\left\{{}\begin{matrix}AH^2=BH.HC\Rightarrow AH=\sqrt{1,8.3,2}=2,4\left(cm\right)\\AB^2=BH.BC\Rightarrow AB=\sqrt{1,8\left(1,8+3,2\right)}=3\left(cm\right)\\AC^2=HC.BC\Rightarrow AC=\sqrt{3,2\left(1,8+3,2\right)}=4\left(cm\right)\end{matrix}\right.\)

b) \(\left\{{}\begin{matrix}tanB=\dfrac{AC}{AB}=\dfrac{4}{3}\Rightarrow\widehat{B}\approx53^0\\tanC=\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow\widehat{C}\approx37^0\end{matrix}\right.\)