Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bổ sung đề: Kẻ DF vuông góc với AB
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
=>AEDF là hình chữ nhật
b: Ta có: AEDF là hình chữ nhật
=>O là trung điểm chung của AD và EF và AD=EF(1)
O là trung điểm của AD
nên \(OA=DO=\dfrac{AD}{2}\left(2\right)\)
O là trung điểm của EF
=>\(OE=OF=\dfrac{FE}{2}\left(3\right)\)
Từ (1),(2),(3) suy ra OA=DO=OE=OF=EF/2=AD/2
Ta có: ΔHAD vuông tại H
mà HO là đường trung tuyến
nên \(HO=\dfrac{1}{2}AD=\dfrac{1}{2}\cdot EF\)
c:
Ta có; ΔAHD vuông tại H
=>AD là cạnh huyền
=>AH<=AD
Để EF nhỏ nhất thì AD nhỏ nhất
mà AH<=AD
Dấu '=' xảy ra khi H trùng với D
Vậy: D là chân đường cao kẻ từ A xuống BC
A B C H E F
a) Xét hai tam giác ABC và HBA có:
\(\widehat{BAC}=\widehat{BHA=1V}\)
\(\widehat{ABC}\left(\widehat{HBA}\right)\): góc chung
Vậy \(\Delta\)ABC ~ \(\Delta\)HBA.
b) Ta có:
AB2 = BH . BC (vì \(\Delta\)ABC ~ \(\Delta\)HBA.)
= 4.13
= 52
\(\Rightarrow\)AB = \(\sqrt{52}=\)\(2\sqrt{13}\)(cm)
Vì \(\Delta\)ABH vuông tại H
\(\Rightarrow\)AH2 = AB2 - BH2
= 36
\(\Rightarrow\)AH = 6(cm)
c) Xét hai tam giác AHE và CHF có:
\(\widehat{HAE}=\widehat{HCF}\)(cùng phụ với \(\widehat{HAC}\))
\(\widehat{AHE}=\widehat{CHF}\) ( cùng phụ với \(\widehat{AHF}\))
Vậy \(\Delta\)AHE ~ \(\Delta\)CHF.
\(\Rightarrow\frac{AE}{CF}=\frac{AH}{CH}\Rightarrow AE.CH=AH.CF\)(đpcm)
d)
Một bài đã làm không xong mà bạn ra hai bài thì ............
Bài 1: Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Bài 26 : Bài giải
a. Do AB⊥AC,HE⊥AB,HF⊥ACAB⊥AC,HE⊥AB,HF⊥AC
⇒ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o
→◊AEHF→◊AEHF là hình chữ nhật
→AH=EF
Mấy câu khác chưa học !
Em tham khảo tại link dưới đây nhé:
Câu hỏi của Trần Thị Vân Ngọc - Toán lớp 8 - Học toán với OnlineMath
a) Xét tứ giác DMEA có 3 góc vuông nên DMEA là hình chữ nhật.
Theo tính chất hình chữ nhật thì AM = DE.
b) Do DMEA là hình chữ nhật nên DE giao AM tại trung điểm mỗi đường. Do đó, I cũng là trung điểm AM.
Gọi K, H lần lượt là trung điểm của AB và AC.
Xét tam giác BAM có K, I lần lượt là trung điểm của AB và AM nên KI là đường trung bình.
Vậy IK// BC. Tương tự IH//BC.
Lại có KE//BC nên I thuộc KH.
Do KH cố định nên ta có: Khi M di chuyển trên đoạn BC thì I di chuyển trên đoạn KH.
c) Ta đã có DE = AM nên DE ngắn nhất khi và chỉ khi AM có độ dài ngắn nhất.
Lại có AM là đường xiên nên luôn luôn lớn hơn hoặc bằng đường cao AH.
Vậy thì AM có độ dài ngắn nhất khi AM trung với AH tức là M trùng H.
=> DE có độ dài ngắn nhất khi M là chân đường vuông góc hạ từ A xuống BC.
F ở đâu ra zậy
cô giáo ra