Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔDAN,ΔHANΔDAN,ΔHAN có :
HN=ND(gt)HN=ND(gt)
ANDˆ=ANHˆ(=90O)AND^=ANH^(=90O)
AN:ChungAN:Chung
=> ΔDAN=ΔHAN(c.g.c)ΔDAN=ΔHAN(c.g.c)
b) Xét ΔAMH,ΔAMEΔAMH,ΔAME có :
HM=ME(gt)HM=ME(gt)
AMHˆ=AMEˆ(=90o)AMH^=AME^(=90o)
AM:ChungAM:Chung
=> ΔAMH=ΔAME(c.g.c)ΔAMH=ΔAME(c.g.c)
Xét tứ giác ANHM có :
Nˆ=90O(HN⊥AB)N^=90O(HN⊥AB)
Aˆ=90O(ΔABC⊥A)A^=90O(ΔABC⊥A)
Mˆ=90O(HM⊥AC)M^=90O(HM⊥AC)
=> Tứ giác ANHM là hình chữ nhật
=> {NH=AMNA=HM{NH=AMNA=HM (tính chất hình chữ nhật)
Ta dễ dàng chứng minh được : ΔANH=ΔAMH(c.c.c)ΔANH=ΔAMH(c.c.c)
Mà : {ΔAND=ΔANHΔAHM=ΔAEM(cmt){ΔAND=ΔANHΔAHM=ΔAEM(cmt)
Suy ra : ΔAND=ΔAMEΔAND=ΔAME
=> DA=AEDA=AE(2 cạnh tương ứng) (*)
c) Từ (*) => A là trung điểm của DE
Do đó : D,A,E thẳng hàng (đpcm)
link nè bạn http://lazi.vn/edu/exercise/cho-tam-giac-nhon-abc-ke-duong-cao-ah-tu-h-ke-he-vong-goc-ab-e-thuoc-ab-ke-f-vuong-goc-voi-ac-f-thuoc-ac
k mk nhé thanks
Này người lạ ơi
.
. đừng nhìn đi đâu
- đúng rồi
- là bạn đó
- cho mình xin 1 ( t í c h) nhé :)
- còn việc kết bạn cứ để mik lo
A B C D E K N
XÉT TAM GIÁC ABD VÀ TAM GIÁC AED
BA=EA ( GT)
\(\widehat{BAD}=\widehat{EAD}\)( GT)
AD-CẠNH CHUNG
=> TAM GIÁC ABD= TAM GIÁC AED ( C.G.C)
=>BD=BE ( 2 CẠNH TƯƠNG ỨNG)
\(\Rightarrow\widehat{ABD}=\widehat{AED}\)( 2 góc tương ứng )
b) ta có : \(\widehat{ABD}+\widehat{KBD}=180^o\left(kb\right)\)
cũng có ; \(\widehat{AED}+\widehat{CED}=180^o\left(kb\right)\)
mà \(\widehat{ABD}=\widehat{AED}\left(cmt\right)\)
=> \(\widehat{KBD}=\widehat{CED}\)
XÉT TAM GIÁC KBD VÀ TAM GIÁC CED :
\(\widehat{KBD}=\widehat{CED}\)(CMT)
BD=ED ( CMT)
\(\widehat{BDK}=\widehat{EDC}\)( ĐỐI ĐỈNH )
=> TAM GIÁC KBD = TAM GIÁC CED (G.C.G)
=>DK=DC ( 2 CẠNH TƯƠNG ỨNG)
c)
vì \(BC//KN\)(GT)
=>\(\widehat{CDN}=\widehat{DNK}\)(SO LE TRONG )
MÀ 2 GÓC NÀY LẠI Ở VỊ TRÍ SO LE TRONG CỦA KD VÀ NC
=> KD//NC
=> \(\widehat{KDN}=\widehat{CND}\)(SO LE TRONG)
XÉT TAM GIÁC KDN VÀ TAM GIÁC CND
\(\widehat{KDN}=\widehat{CND}\)( CMT)
DN-CẠNH CHUNG
\(\widehat{CDN}=\widehat{DNK}\)(CMT)
=> TAM GIÁC KDN = TAM GIÁC CND
=> KN = DC ( 2 CẠNH TƯƠNG ỨNG)
LẠI CÓ DC= DK ( CMT )
=> KN=DK
XÉT TAM GIÁC KDN:KN=DK
=> TAM GIÁC KDN CÂN TẠI K ( Đ/N)
ặc olm có cái lỗi gì ý mình gửi bài mà nó mất tỏm đi mệt quá !!!!!!! mình chẳng muốn làm lại cả bài 2 và bài 3 một tí nào !!!!!!!!!!!!!!!!
a: Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó:ΔAHD cân tại A
mà AB là đường trung tuyến
nên AB là tia phân giác của góc HAD(1)
Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)
hay D,A,E thẳng hàng
b: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//ED
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó:ΔDHE vuông tại H
a: Ta có: H và D đối xứng với nhau qua AB
nên AH=AD; BH=BD
=>ΔHAD cân tại A
=>AB là phân giác của góc HAD(1)
Ta có H và E đối xứngvới nhau qua AC
nên AH=AE; CH=CE
=>ΔAHE cân tại A
=>AC là phân giác của góc HAE(2)
Từ (1) và (2) suy ra góc DAE=2xgóc BAC=180 độ
=>D,A,E thẳng hàng
b: Xét ΔAHB và ΔADB có
AH=AD
BH=BD
AB chung
Do đó: ΔAHB=ΔADB
Suy ra: góc ADB=90 độ
=>BD vuông góc với DE(3)
Xét ΔAHC và ΔAEC có
AH=AE
HC=EC
AC chung
Do đó: ΔAHC=ΔAEC
Suy ra: góc AEC=90 độ
=>CE vuông góc với ED(4)
Từ (3) và (4) suy ra BDEC là hình thang vuông
c: ED=AE+AD
=AH+AH=2AH
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó: ΔDHE vuông tại H