Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a, là hcn
câu b
từ câu a => hf // và = ae
mà hf = fm
=> fm // và = ae
=> đpcm
câu c
tam giác bnh có be vừa là dcao vừa trung tuyến
=> tam giác bnh cân b
=> bn=bh (1)
cmtt => ch=cm (2)
mà bc= bh+ch
=> bc^2 = (bh+ch+)^2
= bh^2 + 2 bh.ch +ch^2 (3)
(1) (2) (3) => ... (đpcm)
lười làm đầy đủ nên vắn ắt z thôi, thông cảm nhé ^_^

a: Ta có: E và H đối xứng nhau qua AB
nên AB là đường trung trực của EH
Suy ra: AB\(\perp\)EH tại M và M là trung điểm của EH
Ta có: H và F đối xứng nhau qua AC
nên AC là đường trung trực của HF
Suy ra: AC\(\perp\)HF tại N và N là trung điểm của FH
Xét tứ giác AMHN có
\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)
Do đó: AMHN là hình chữ nhật

a) Xét tứ giác ANHM, ta có
\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^o\) (gt)
=> AMHN là hình chữ nhật
b)
Xét tam giác AEH, ta có:
AM là đg trung tuyến( M là trung điểm EH)
AM là đcao(AM vuông góc với EH)
=> tam giác AEH cân tại A
Mà AM là đg trung tuyến(M là trung điểm EH)
Nên AM là đg phân giác
=> \(\widehat{EAH}=\widehat{MAH}\) (1)
Xét tam giác HAE ta có:
AN là đcao(AN vuông góc với FH)
AN là đg trung tuyến ( N là trung điểm HF)
=> tam giác AHE cân tại A
Mà AN là đg trung tuyến ( N là trung điểm HF)
Nên AN là đg phân giác
=> \(\widehat{NAH}=\widehat{NAF}\) (2)
Từ (1) và (2)
=> \(\widehat{HAM}+\widehat{HAN}=90^o=\widehat{EAM}+\widehat{NAF}\)
=> \(\widehat{HAM}+\widehat{HAN}+\widehat{EAM}+\widehat{NAF}=90^o+90^o=180^o\)
=> E,A,F thẳng hàng
Ta có:
AE=AH(tam giác AEH cân tại A)
AF=AH(tam giác HAF cân tại A)
=> AE=AF
=> E là trung điểm EF
=> E đối xứng với F qua A
a)Xét tứ giác AMHN có:
BAC=90
AMH=90
ANH=90
suy ra tứ giác AMHN là hình chữ nhật(dấu hiệu 1)
b)Ta có E đối xứng với H qua AB
suy ra AB là đường trung trực của EH
suy ra AE=AH(1)
Chứng minh tương tự ta có
AH=AF(2)
Từ (1) và(2) suy ra AE=AF(3)
Có AE=AH
Suy ra tam giác AEH cân tại A
suy ra A1=A2
Có AH=AF
suy ra tam giác AFH cân tại A
suy ra A3=A4
Có góc EAF=A1+A2+A3+A4
=A2+A2+A3+A3(A1=A2;A3=A4)
=2*A2+2*A3
=2*(A3+A4)
=2*90
=180
suy ra E,A,F thẳng hàng(4)
Từ (3) và (4) suy ra E đối xứng với F qua A