\(\in BC\). Điểm E đối xúng vói H qua AB, F...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2020

a)Xét tứ giác AMHN có:

BAC=90

AMH=90

ANH=90

suy ra tứ giác AMHN là hình chữ nhật(dấu hiệu 1)

b)Ta có E đối xứng với H qua AB

suy ra AB là đường trung trực của EH

suy ra AE=AH(1)

Chứng minh tương tự ta có

AH=AF(2)

Từ (1) và(2) suy ra AE=AF(3)

Có AE=AH

Suy ra tam giác AEH cân tại A

suy ra A1=A2

Có AH=AF

suy ra tam giác AFH cân tại A

suy ra A3=A4

Có góc EAF=A1+A2+A3+A4

=A2+A2+A3+A3(A1=A2;A3=A4)

=2*A2+2*A3

=2*(A3+A4)

=2*90

=180

suy ra E,A,F thẳng hàng(4)

Từ (3) và (4) suy ra E đối xứng với F qua A

27 tháng 11 2016

a, là hcn

câu b

từ câu a => hf // và = ae

mà hf = fm

=> fm // và = ae

=> đpcm

câu c

tam giác bnh có be vừa là dcao vừa trung tuyến

=> tam giác bnh cân b

=> bn=bh (1)

cmtt => ch=cm (2)

mà bc= bh+ch

=> bc^2 = (bh+ch+)^2

= bh^2 + 2 bh.ch +ch^2 (3)

(1) (2) (3) => ... (đpcm)

lười làm đầy đủ nên vắn ắt z thôi, thông cảm nhé ^_^

16 tháng 10 2021

a: Ta có: E và H đối xứng nhau qua AB

nên AB là đường trung trực của EH

Suy ra: AB\(\perp\)EH tại M và M là trung điểm của EH

Ta có: H và F đối xứng nhau qua AC

nên AC là đường trung trực của HF

Suy ra: AC\(\perp\)HF tại N và N là trung điểm của FH

Xét tứ giác AMHN có 

\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^0\)

Do đó: AMHN là hình chữ nhật

31 tháng 12 2017

a) Xét tứ giác ANHM, ta có

\(\widehat{MAN}=\widehat{ANH}=\widehat{AMH}=90^o\) (gt)

=> AMHN là hình chữ nhật

31 tháng 12 2017

b)

Xét tam giác AEH, ta có:

AM là đg trung tuyến( M là trung điểm EH)

AM là đcao(AM vuông góc với EH)

=> tam giác AEH cân tại A

Mà AM là đg trung tuyến(M là trung điểm EH)

Nên AM là đg phân giác

=> \(\widehat{EAH}=\widehat{MAH}\) (1)

Xét tam giác HAE ta có:

AN là đcao(AN vuông góc với FH)

AN là đg trung tuyến ( N là trung điểm HF)

=> tam giác AHE cân tại A

Mà AN là đg trung tuyến ( N là trung điểm HF)

Nên AN là đg phân giác

=> \(\widehat{NAH}=\widehat{NAF}\) (2)

Từ (1) và (2)

=> \(\widehat{HAM}+\widehat{HAN}=90^o=\widehat{EAM}+\widehat{NAF}\)

=> \(\widehat{HAM}+\widehat{HAN}+\widehat{EAM}+\widehat{NAF}=90^o+90^o=180^o\)

=> E,A,F thẳng hàng

Ta có:

AE=AH(tam giác AEH cân tại A)

AF=AH(tam giác HAF cân tại A)

=> AE=AF

=> E là trung điểm EF

=> E đối xứng với F qua A