K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(HB=\dfrac{12^2}{16}=9\left(cm\right)\)

BC=BH+CH=9+16=25(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\sqrt{9\cdot25}=15\left(cm\right)\\AC=\sqrt{16\cdot25}=20\left(cm\right)\end{matrix}\right.\)

24 tháng 4 2018

dễ quá mai mình làm cho

giờ ngủ đây

10 tháng 8 2021

a,

pytago trong tam giác ABH

\(=>AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4,5^2}=7,5cm\)

dễ dàng chứng minh \(\Delta AHB\sim\Delta CAB\left(g.g\right)=>\dfrac{AH}{AC}=\dfrac{HB}{AB}=>AC=10cm\)

pytago cho tam giác ABC

\(=>BC=\sqrt{AB^2+AC^2}=12,5cm\)

\(=>HC=BC-HB=8cm\)

b, pytago cho tam giác AHB

\(=>AH=\sqrt{AB^2-BH^2}=3\sqrt{3}cm\)

rồi tính AC , CH làm tương tự bài trên

29 tháng 3 2018

a)   Xét   \(\Delta ABC\) và   \(\Delta HAC\) có:

\(\widehat{BAC}=\widehat{AHC}=90^0\)

\(\widehat{ABC}=\widehat{HAC}\)  do cùng phụ với góc BAH )

suy  ra:    \(\Delta ABC~\Delta HAC\)

b)  Áp dụng định lý Pytago ta có:

    \(BC^2=AB^2+AC^2\)

\(\Leftrightarrow\)\(BC^2=6^2+8^2=100\)

\(\Leftrightarrow\)\(BC=\sqrt{100}=10\)

  Áp dụng hệ thức lượng ta có:

 \(AH=\frac{AB.AC}{BC}=\frac{6.8}{10}=4,8\)cm

\(CH=\frac{AC^2}{BC}=\frac{8^2}{10}=6,4\)cm

  \(BH=BC-HC=10-6,4=3,6\)cm

26 tháng 9 2019

A B H C

 Áp dụng hệ thức cạnh và đường cao :

       \(BC.BH=AB^2=15^2=225\left(1\right)\)

Mặt khác : BC = BH + HC

\(\Rightarrow BC-BH=HC=16\)

\(\Rightarrow BH=BC-16\)

Thay vào ( 1 ) ta có : 

\(BC.\left(BC-16\right)=225\)

\(\Leftrightarrow BC^2-16BC-225=0\)

\(\Leftrightarrow BC^2-25BC+9BC-225=0\)

\(\Leftrightarrow BC\left(BC-25\right)+9\left(BC-25\right)=0\)

\(\Leftrightarrow\left(BC-25\right)\left(BC+9\right)=0\)

Mà BC > 0 \(\Rightarrow BC=25\left(cm\right)\)

Áp dụng định lý Pytago :
\(AC=\sqrt{BC^2-AB^2}=\sqrt{25^2-15^2}=20\left(cm\right)\)

Áp dụng hệ thức cạnh và đường cao :

\(AB.AC=BC.AH\)

\(\Rightarrow AH=\frac{AB.AC}{BC}=\frac{15.20}{25}=12\left(cm\right)\)

Chúc bạn học tốt !!!

21 tháng 4 2019

A B c H

A / Xét tam giác ABH và tam giác CBA

có góc AHB = góc BAC =90 độ

góc B chung 

=> tam giác ABH đồng dạng với tam giác CBA (g-g)

Xét tam giác CBA và tam giác CAH 

có góc AHC = góc BAC = 90 độ

Góc C chung

=> tam giác CBA đồng dạng với tam giác CAH (g-g)

Có + tam giác CBA đồng dạng với tam giác CAH 

      + tam giác ABH đồng dạng với tam giác CBA

=> tam giác ABH đồng dạng với tam giác CAH

15 tháng 6 2015

Áp dụng hệ thức lượng ta có: \(AB^2=BH.BC;\) \(AC^2=HC.BC\)

=>\(\left(\frac{AB}{AC}\right)^2=\frac{BH.BC}{CH.BC}=\frac{BH}{HC}\); TA LẠI CÓ: \(\frac{AB}{AC}=\frac{3}{7}\Leftrightarrow\left(\frac{AB}{AC}\right)^2=\frac{9}{49}\Leftrightarrow\frac{BH}{CH}=\frac{9}{49}\Rightarrow BH=\frac{9}{49}.CH\)

VẪN DÙNG HỆ THỨC LƯỢNG TA CÓ: 

\(AH^2=HB.HC\Leftrightarrow HB.HC=42^2=1764\Leftrightarrow\frac{9}{49}CH.CH=1764\Leftrightarrow CH=98\Leftrightarrow BH=18\)

30 tháng 6 2016

<br class="Apple-interchange-newline"><div id="inner-editor"></div>AB2=BH.BC; AC2=HC.BC

=>(ABAC )2=BH.BCCH.BC =BHHC ; TA LẠI CÓ: