Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: AB.cosB + cosC.AC=\(\frac{AB^2}{BC}+\frac{AC^2}{BC}\)=\(\frac{BC^2}{BC}\)=BC
b) CMR: tam giác ABC đồng dạng với tam giác AFE(g-g)
\(\Rightarrow\)\(\frac{AB}{AF}=\frac{BC}{EF}\)
\(\Rightarrow\)AB.EF=BC.AF
CMR: tam giác ABH đồng dạng với tam giác AHE (g-g)
\(\Rightarrow\)\(\frac{AB}{AH}=\frac{AH}{AE}\)
\(\Rightarrow\)\(\frac{AH}{AE}=\frac{AH.AB}{AH^2}\)\(\Rightarrow\)\(\frac{AH}{AE}=\frac{EF.AB}{AH^2}\)
\(\Rightarrow\)\(\frac{AH}{AE}=\frac{AF.BC}{AH^2}\)\(\Rightarrow\frac{AH^3}{BC}=AE.AF\)
Ta có:\(S_{AEHF}=AE.AF\)
\(\Rightarrow S_{AEHF}=\frac{AH^3}{BC}\)
1: Xét ΔABH vuông tại H có HE là đường cao
nên \(AE\cdot AB=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có HF là đường cao
nên \(AF\cdot AC=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AE\cdot AB=AF\cdot AC\)
2: \(AE\cdot AB+AF\cdot AC=AH^2+AH^2=2AH^2\)
4: \(4\cdot OE\cdot OF=2OE\cdot2OF=FE\cdot AH=AH^2\)
\(HB\cdot HC=AH^2\)
Do đó: \(4\cdot OE\cdot OF=HB\cdot HC\)
Cô hướng dẫn nhé.
a. Kẻ \(DK\perp BC.\)
Khi đó ta thấy \(IA=IK;DA=DK.\)Lại có \(\Delta HIK\sim\Delta KDC\left(g-g\right)\Rightarrow\frac{IH}{KD}=\frac{IK}{DC}\Rightarrow\frac{IH}{IK}=\frac{KD}{DC}\Rightarrow\frac{IH}{IA}=\frac{DA}{DC}\)
b. Ta có \(BE.AB=BH^2;CF.AC=HC^2\Rightarrow BE.AB.CF.AC=HB^2.HC^2=AH^4\)
\(\Rightarrow BE.CF\left(AB.AC\right)=AH^4\Rightarrow BE.CF.AH.BC=AH^4\Rightarrow BE.CF.BC=AH^3\)
c. Tính \(BE\Rightarrow AE;CF\Rightarrow AC\Rightarrow S_{EHF}\)