K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2016

hiha

15032096_229847127435111_1802351861761025051_n.jpg?oh=2341d4195dfe6241e04388065b174e6b&oe=58960660

14955817_229847134101777_6360046847247255931_n.jpg?oh=8fbcbae78b23c769fa37d18be5e83863&oe=58C57576

15036645_229847130768444_8969830646332652852_n.jpg?oh=bae9965a9ba6450cf3dcc6bacb7b242c&oe=5890BF5D

8 tháng 11 2016

Cảm ơn bn nhiều lắm

AH
Akai Haruma
Giáo viên
4 tháng 1 2023

Lời giải:
a. Tứ giác $AEHF$ có 3 góc vuông: $\widehat{A}=\widehat{E}=\widehat{F}=90^0$ nên là hình chữ nhật.

b. Vì $I, H$ đối xứng với nhau qua $E$ nên $E$ là trung điểm của $IH$

Xét tam giác $AIE$ và $AHE$ có:

$AE$ chung

$IE=EH$ (do $E$ là trung điểm $IH$)

$\widehat{AEI}=\widehat{AEH}=90^0$

$\Rightarrow \triangle AIE=\triangle AHE$ (c.g.c)

$\Rightarrow \widehat{IAE}=\widehat{HAE}(1)$

Tương tự: $\triangle AHF=\triangle AKF$ (c.g.c)

$\Rightarrow \widehat{KAF}=\widehat{HAF}(2)$

Từ $(1); (2)\Rightarrow \widehat{IAE}+\widehat{KAF}+\widehat{BAC}=\widehat{HAE}+\widehat{HAF}+\widehat{BAC}$

Hay $\widehat{IAK}=\widehat{BAC}+\widehat{BAC}=90^0+90^0=180^0$

$\Rightarrow I,A,K$ thẳng hàng.

a: Xét tứ giác AMHK có

góc AMH=góc AKH=góc KAM=90 độ

=>AMHK là hình chữ nhật

=>AH=MK

b: Xét ΔAHD có

AB vừa là đường cao, vừa là trung tuyến

nên ΔAHD cân tại A

=>AH=AD và AB là phân giác của góc HAD(1)
Xét ΔHEA có

AC vừa là đường cao, vừa là trung tuyến

nên ΔAHE cân tại A

=>AH=AE và AC là phân giác của góc HAE(2)

Từ (1), (2) suy ra góc DAE=2*90=180 độ

=>D,A,E thẳng hàng

mà AD=AE

nên A là trung điểm của DE

c: Xét ΔAHB và ΔADB có

AH=AD

góc HAB=góc DAB

AB chung

=>ΔAHB=ΔADB

=>góc ADB=90 dộ

=>BD vuông góc DE(3)

Xét ΔAHC và ΔAEC có

AH=AE

góc HAC=góc EAC

AC chung

=>ΔAHC=ΔAEC

=>goc AEC=90 độ

=>CE vuông góc ED(4)

Từ (3), (4) suy ra BD//CE