K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(BC+AH\right)^2>\left(AB+AC\right)^2\)

\(\Leftrightarrow BC^2+2\cdot BC\cdot AH+AH^2>AB^2+AC^2+2\cdot AB\cdot AC\)

\(\Leftrightarrow BC^2+2\cdot AB\cdot AC+AH^2-BC^2-2\cdot AB\cdot AC>0\)

\(\Leftrightarrow AH^2>0\)(luôn đúng)

25 tháng 3 2017

Tam giác ABC vuông tại A nên \(BC^2=AB^2+AC^2\)\(\Rightarrow\)\(BC^2-AB^2-AC^2=0\)

Mặt khác \(2AH.BC=2AB.AC\) (vì cùng bằng diện tích tam giác ABC).

BĐT cần CM tương đương với (AH + BC)2 > (AB + AC)2 

hay \(AH^2+BC^2+2AH.BC>AB^2+AC^2+2AB.AC\)

\(\Leftrightarrow\)\(AH^2+\left(BC^2-AB^2-AC^2\right)+\left(2AH.BC-2AB.AC\right)>0\)

\(\Leftrightarrow\)\(AH^2>0\) (luôn đúng).

12 tháng 3 2016

xin các bạn trả lời cho mình đi

6 tháng 6 2016

Ta có: góc ABC = góc BAC + góc ACB (Tam giác abc vuông tại a)

=>      BC          = AB + AC (Quan hệ giữa góc và cạnh đối diện)

=>      BC + AH > AB + AC

Hay    AB + AC < BC + AH                

\(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{AB\cdot AC}{2}\)

Do đó: \(AH\cdot BC=AB\cdot AC\)