Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, đường cao AH, biết BH=a; CH=b. Chứng minh:\(\sqrt{ab}< \frac{a+b}{2}\)
Cho tam giác ABC vuông tại A, đường cao AH, biết BH=a; CH=b. Chứng minh:\(\sqrt{ab}< \frac{a+b}{2}\)
Goij D là trung điểm của BC =>AD=BC/2=(a+b)/2
ma AH=căn ab
va AH</ AD
A B C H M a b
Gọi M là trung điểm của BC. Vì tam giác ABC vuông tại A và có cạnh huyền BC nên : \(AM=\frac{BC}{2}=\frac{a+b}{2}\) (1)
Mặt khác, ta có : \(AH^2=BH.CH\Rightarrow AH=\sqrt{ab}\) (2)
Ta luôn có : \(AH\le AM\) (3)(quan hệ giữa đường xiên và hình chiếu)
Từ (1) (2) và (3)\(\Rightarrow\sqrt{ab}\le\frac{a+b}{2}\) (đpcm)
Hình vẽ chung cho cả ba bài.
Bài 1:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)
\(\Rightarrow AH^2=144\Rightarrow AH=12\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)
\(\Rightarrow BC=BH+CH=9+16=25\)
Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.
Bài 2: Bài giải
Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)
Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)
\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)
Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
Nếu BH = 16 cm thì CH = 9 cm
\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
Ta thấy:
\(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow a^2+2ab+b^2\ge2ab+2ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)
\(\Rightarrow\sqrt{\frac{\left(a+b\right)^2}{4}}\ge\sqrt{ab}\)
\(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
hay \(\sqrt{ab}\ge\frac{a+b}{2}\)