K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2022

a: \(AH=\sqrt{4\cdot9}=6\left(cm\right)\)

\(AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right)\)

\(AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)

b: \(9\cdot sinB+6\cdot cosB-3\cdot tanC\)

\(=9\cdot\dfrac{AC}{BC}+6\cdot\dfrac{AB}{BC}-3\cdot\dfrac{AB}{AC}\)

\(=9\cdot\dfrac{3\sqrt{13}}{13}+6\cdot\dfrac{2\sqrt{13}}{13}-3\cdot\dfrac{2\sqrt{13}}{3\sqrt{13}}\)

\(=3\sqrt{13}-2\)

a: Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\sqrt{13}\left(cm\right)\\AC=3\sqrt{13}\left(cm\right)\\AH=6\left(cm\right)\end{matrix}\right.\)

16 tháng 9 2020

A C B D O M K H

a;b dễ chắc tự làm đc

c, lấy K sao cho M là trđ của OK

mà có M là trđ của AC (gt) 

=> COAK là hình bình hành (dh)

=> CK // OA hay CK // OH và AK // CO hay AK // OD

xét tg KCB có CK // OH => \(\frac{BH}{HC}=\frac{BO}{OK}\)  (talet)

xét tg KAB có AK / OD => \(\frac{BO}{OK}=\frac{BD}{DA}\) (talet)

=> \(\frac{BH}{HC}=\frac{BD}{AD}\) mà có \(\frac{BD}{AD}=\frac{BC}{AC}\) do CD là pg của tg ABC (gt)

=> \(\frac{BC}{AC}=\frac{HB}{HC}\Rightarrow BC\cdot HC=HB\cdot AC\)

mà có \(BC\cdot HC=AC^2\) do tg ABC v tại A và AH _|_ BC (gt)

=> AC^2 = HB*AC

=> AC = HB (chia 2 vế cho ac vì ac > 0)

17 tháng 9 2020

Theo định lý Ce-va ta có: \(\frac{BH}{HC}.\frac{MC}{MA}.\frac{DA}{DB}=1\)

Mà MA = MC (do BM là đường trung tuyến của \(\Delta\)ABC) nên \(\frac{BH}{HC}.\frac{DA}{DB}=1\)(1)

CD là phân giác nên theo tính chất đường phân giác trong tam giác, ta có: \(\frac{DA}{DB}=\frac{AC}{BC}\)(2)

Từ (1) và (2) suy ra \(\frac{BH}{HC}.\frac{AC}{BC}=1\Rightarrow BH.AC=HC.BC\)(3)

Dễ thấy \(\Delta ABC~\Delta HAC\left(g.g\right)\Rightarrow\frac{HC}{AC}=\frac{AC}{BC}\Rightarrow AC^2=BH.HC\)(4)

Từ (3) và (4) suy ra \(AC^2=BH.AC\Rightarrow BH=AC\left(đpcm\right)\)

22 tháng 9 2015

BÀI 2 : áp dụng hệ thức lượng trong tam giác, ta có: AH^2=BH*CH=>AH^2= 4*9=36=>AH=căn bậc hai của 36=6

\(AB^2=BH\cdot BC=4\cdot\left(4+9\right)=52=>AB=\sqrt{52}=2\sqrt{13}\)

\(AC^2=CH\cdot BC=9\cdot13=117=>AC=\sqrt{117}=3\sqrt{13}\)

3 tháng 9 2020

Hình vẽ chung cho cả ba bài.

Bài 1:

\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)

\(\Rightarrow AH^2=144\Rightarrow AH=12\)

\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)

\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)

\(\Rightarrow BC=BH+CH=9+16=25\)

Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.

3 tháng 9 2020

Bài 2:                                                    Bài giải

Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)

Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)

\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)

Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

Nếu BH = 16 cm thì CH = 9 cm

\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)

\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

13 tháng 2 2016

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

BC=BH+CH=13cm

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC; AB^2=BH*BC; AC^2=CH*BC

=>\(AH=\sqrt{4\cdot9}=6\left(cm\right);AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right);AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)