Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ
a) Ta có: AB : AC = 3 : 4
=> \(\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{21}{7}=3\)
=> \(AB=9;\)\(AC=12\)
Áp dụng Pytago ta có:
BC2 =AB2 + AC2
<=> BC2 = 92 + 122 = 225
<=> BC = 25
b) Áp dụng hệ thức lượng ta có:
\(AH.BC=AB.AC\)
=> \(AH=\frac{AB.AC}{BC}=7,2\)
\(AB^2=BH.BC\)
=> \(BH=\frac{AB^2}{BC}=5,4\)
=> \(CH=BC-BH=9,6\)
Hình tự vẽ
a) Ta có: AB : AC = 3 : 4
=> \(\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{21}{7}=3\)
=> \(AB=9;\)\(AC=12\)
Áp dụng Pytago ta có:
BC2 =AB2 + AC2
<=> BC2 = 92 + 122 = 225
<=> BC = 25
b) Áp dụng hệ thức lượng ta có:
\(AH.BC=AB.AC\)
=> \(AH=\frac{AB.AC}{BC}=7,2\)
\(AB^2=BH.BC\)
=> \(BH=\frac{AB^2}{BC}=5,4\)
=> \(CH=BC-BH=9,6\)
AB=21/(3+4)x3=9 cm
AC=21-9=12cm
Tự kẻ hình bạn nhé =)))
Áp dụng định lí Pitago vào tam giác ABC , có
AB^2+AC^2=BC^2
=>thay số vào, tính được BC=15cm
Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:
AB^2=BHxBC
=>BH=81/15=5.4cm
=>CH=15-5.4=9.6cm
AH^2=BHxCH=5.4x9.6=51.84cm
bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!
rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ
Bài 1:
a: \(AB=21\cdot\dfrac{3}{7}=9\left(cm\right)\)
AC=21-9=12(cm)
=>BC=15(cm)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=7,2(cm)
Xét ΔAHB vuông tại H có \(AB^2=AH^2+BH^2\)
hay BH=5,4(cm)
=>CH=9,6(cm)
Hình vẽ chung cho cả ba bài.
Bài 1:
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{15^2}+\frac{1}{20^2}=\frac{1}{144}\)
\(\Rightarrow AH^2=144\Rightarrow AH=12\)
\(BH=\sqrt{AB^2-AH^2}=\sqrt{15^2-12^2}=\sqrt{81}=9\)
\(CH=\sqrt{AC^2-AH^2}=\sqrt{20^2-12^2}=\sqrt{256}=16\)
\(\Rightarrow BC=BH+CH=9+16=25\)
Bài 2,3 bạn nhìn hình vẽ và sử dụng hệ thức lượng để tính tiếp như bài 1.
Bài 2: Bài giải
Đặt BH = x (0 < x < 25) (cm) => CH = 25 - x (cm)
Ta có : \(AH^2=BH\cdot CH\text{ }\Rightarrow\text{ }x\left(25-x\right)=144\text{ }\Rightarrow\text{ }x^2-25x+144=0\)
\(\left(x-9\right)\left(x-16\right)=0\text{ }\Rightarrow\orbr{\begin{cases}x=9\\x=16\end{cases}}\left(tm\right)\)
Nếu BH = 9 cm thì CH = 16 cm \(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
Nếu BH = 16 cm thì CH = 9 cm
\(\Rightarrow\text{ }AB=\sqrt{AH^2+BH^2}=\sqrt{12^2+16^2}=20\text{ }\left(cm\right)\)
\(AC=\sqrt{AH^2+CH^2}=\sqrt{9^2+12^2}=15\text{ }\left(cm\right)\)
ban tu ve hinh nha
ta co \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{21}{7}=3\)
\(\Rightarrow AB=9,AC=12\)
ap dung dl pitago vao tam giac ABC vuong tai A
\(AB^2+AC^2=BC^2\Rightarrow BC=15\)
B. ap dung he thuc luong trong tam gia vuong ABC co
\(AH\cdot BC=AC\cdot AB\Rightarrow AH=\frac{12\cdot9}{15}=7,2\)
\(AB^2=BH\cdot CB\Rightarrow BH=\frac{9^2}{15}=5.4\)\(\Rightarrow CH=BC-BH=15-5,4=9.6\)
Hình tự vẽ
a) Ta có: AB : AC = 3 : 4
=> \(\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{21}{7}=3\)
=> \(AB=9;\)\(AC=12\)
Áp dụng Pytago ta có:
BC2 =AB2 + AC2
<=> BC2 = 92 + 122 = 225
<=> BC = 25
b) Áp dụng hệ thức lượng ta có:
\(AH.BC=AB.AC\)
=> \(AH=\frac{AB.AC}{BC}=7,2\)
\(AB^2=BH.BC\)
=> \(BH=\frac{AB^2}{BC}=5,4\)
=> \(CH=BC-BH=9,6\)