K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBHA vuông tại H và ΔBAC vuông tại A có

góc B chung

Do đó: ΔBHA\(\sim\)ΔBAC 

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

BH=AB2/BC=3,6(cm)

b: Xét ΔAHC vuông tại H có HN là đường cao

nên \(HN^2=AH\cdot CN\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)

b: Xét ΔAHC vuông tại H có HN là đường cao

nên \(HN^2=NA\cdot NC\)

a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có

góc B chung

=>ΔBAH đồng dạng với ΔBCA

\(CB=\sqrt{6^2+8^2}=10\left(cm\right)\)

BH=6*8/10=4,8cm

b: ΔAHC vuôg tại H có HN vuông góc AC
nên HN^2=AN*CN

22 tháng 3 2023

a: Xét ΔBAH vuông tại H và ΔBCA vuông tại A có

góc B chung

=>ΔBAH đồng dạng với ΔBCA

CB=√6^2+8^2=10(cm)

BH=6*8/10=4,8cm

b: ΔAHC vuôg tại H có HN vuông góc AC
nên HN^2=AN*CN

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Ta có: ΔHAC\(\sim\)ΔABC(cmt)

nên \(\dfrac{AH}{AB}=\dfrac{AC}{BC}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\Leftrightarrow\dfrac{AH}{6}=\dfrac{8}{10}=\dfrac{4}{5}\)

hay AH=4,8(cm)

Vậy: AH=4,8cm

a) Xét ΔHAC vuông tại H và ΔABC vuông tại A có 

\(\widehat{ACH}\) chung

Do đó: ΔHAC\(\sim\)ΔABC(g-g)

23 tháng 4 2018

ai giúp với

Bạn kham khảo link này nhé.

Câu hỏi của Trần Ngô Anh Tuyền - Toán lớp 8 - Học toán với OnlineMath

15 tháng 4 2019

Link đâu ạ em tham khảo vs 

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.a) CM: Tam giác ABE đồng dạng với tam giác ACF.b) CM: Tam giác AFE đồng dạng với tam giác ACB.c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng...
Đọc tiếp

Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.

a) CM: Tam giác ABE đồng dạng với tam giác ACF.

b) CM: Tam giác AFE đồng dạng với tam giác ACB.

c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.

Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.

a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM

b) CM: tam giác ACM đồng dạng với tam giác HNC.

c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.

1
27 tháng 5 2021

Bài 1: 

a) Xét tam giác ABE và tam giác ACF có:

Góc AEB=góc AFC(=90 độ)

Góc A chung

=>Tam giác ABE đồng dạng vs tam giác ACF (g-g)

b)

Vì tam giác ABE đồng dạng vs tam giác ACF(cmt)

=>\(\frac{AB}{AC}=\frac{AE}{AF}\)

Xét tam giác AFE và tam giác ACB có:

Góc A chung(gt)

\(\frac{AB}{AC}=\frac{AE}{AF}\)

=>Tam giác AFE và tam giác ACB đồng dạng (c-g-c)

c)

H ở đou ra vại? :))

22 tháng 8 2021

BE vs CF cắt nhau ở h còn j bạn;-;