Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho tam giác ABC vuông tại A, đường cao AH, biết BH=a; CH=b. Chứng minh:\(\sqrt{ab}< \frac{a+b}{2}\)
Cho tam giác ABC vuông tại A, đường cao AH, biết BH=a; CH=b. Chứng minh:\(\sqrt{ab}< \frac{a+b}{2}\)
A B C H M a b
Gọi M là trung điểm của BC. Vì tam giác ABC vuông tại A và có cạnh huyền BC nên : \(AM=\frac{BC}{2}=\frac{a+b}{2}\) (1)
Mặt khác, ta có : \(AH^2=BH.CH\Rightarrow AH=\sqrt{ab}\) (2)
Ta luôn có : \(AH\le AM\) (3)(quan hệ giữa đường xiên và hình chiếu)
Từ (1) (2) và (3)\(\Rightarrow\sqrt{ab}\le\frac{a+b}{2}\) (đpcm)
Ta thấy:
\(\left(a-b\right)^2\ge0\)
\(\Rightarrow a^2-2ab+b^2\ge0\)
\(\Rightarrow a^2+b^2\ge2ab\)
\(\Rightarrow a^2+2ab+b^2\ge2ab+2ab\)
\(\Rightarrow\left(a+b\right)^2\ge4ab\)
\(\Rightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)
\(\Rightarrow\sqrt{\frac{\left(a+b\right)^2}{4}}\ge\sqrt{ab}\)
\(\Rightarrow\frac{a+b}{2}\ge\sqrt{ab}\)
hay \(\sqrt{ab}\ge\frac{a+b}{2}\)
Hình bn tự vẽ nha.
Gọi M là trung điểm của BC. Vì tam giác ABC vuông tại A và có cạnh huyền nên :
\(AM=\frac{BC}{2}=\frac{a+b}{2}\) (1)
Mặt khác ta có : \(AH^2=BH.CH\Rightarrow AH=\sqrt{ab}\) (2)
Ta luôn có :\(AH\le AM\) (3) ( quan hệ giữa đường xiên và hình chiếu)
Từ (1) (2) (3) => \(\sqrt{ab}\le\frac{a+b}{2}\) ( Đpcm)
a) Theo hệ thức lượng trong tg vuông ta có:
AB2 =BH.BC
Và AC2= CH.BC
=>AB2/AC2=BH.BC/CH.BC=BH/CH
Vậy ...
b) mik ko bt E và F là j nên ko làm đc nha
Goij D là trung điểm của BC =>AD=BC/2=(a+b)/2
ma AH=căn ab
va AH</ AD