K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

Bài 1:

a: Ta có: ΔBKC vuông tại K

mà KM là đường trung tuyến

nên KM=BC/2(1)

Ta có: ΔBHC vuông tại H

mà HM là đường trung tuyến

nên HM=BC/2(2)

Từ (1)và (2) suy ra MH=MK

hay ΔMHK cân tại M

b: Kẻ MN vuông góc với HK

=>N là trung điểm của HK

Xét hình thang CBDE có

M là trung điểm của BC

MN//DB//EC

DO đó: N là trung điểm của DE

=>DK=HE

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC b ) Chứng minh , BF.FC = DF.EF  c ) Tính BC biết DE = 5cm , EF = 4cm . d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE ....
Đọc tiếp

Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E. 

a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC 

b ) Chứng minh , BF.FC = DF.EF 

 c ) Tính BC biết DE = 5cm , EF = 4cm 

. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC

 

 

 .Bài 26 : Cho  tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC 

a ) Chứng minh : AH = EF 

b ) Chứng minh : AB^2 = BH.BC 

c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác  ABC 

d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB . 

 

 

Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K. 

a ) Tính BC , AD 

b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB , 

c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .

3
2 tháng 9 2020

Bài 26 :                                             Bài giải

a. Do ABAC,HEAB,HFACAB⊥AC,HE⊥AB,HF⊥AC

ˆEAF=ˆAEH=ˆAFH=90o⇒EAF^=AEH^=AFH^=90o

AEHF→◊AEHF là hình chữ nhật

AH=EF

Mấy câu khác chưa học !

2 tháng 9 2020

Bài 27 :                                                                  Bài giải

Hình : 

A B C D H K M x J

Còn bài giải tham khảo : Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

Câu hỏi của nguyễn nhật trang nhung - Toán lớp 8 - Học toán với OnlineMath

15 tháng 12 2021

sai hay đúng?

29 tháng 4 2017

tự làm nhé

bài đó dễ quá nên mik ko biết làm

29 tháng 4 2017

bạn nói dễ mà sao ko biết làm minh chuong

21 tháng 3 2019

A B C H K I E F

Xét \(\Delta BAC\) Và   \(\Delta ACH\) có :

      \(\widehat{BAC}\)\(=\)\(\widehat{AHC}\) ( cùng = 900 )

           \(\widehat{C}\)là góc chung

 \(\Rightarrow\) \(\Delta BAC\)\(~\)\(\Delta AHC\) ( g - g )     (1)

 \(\Rightarrow\)\(\frac{BC}{AC}=\frac{AB}{AH}\)\(\Rightarrow BC.AH=AB.AC\)

b)  Xét \(\Delta AHC\)có :

  K là trung điểm của CH

  I là trung điểm của AH

\(\Rightarrow\)IK // AC

Do IK // AC :

\(\Rightarrow\)\(\Delta HIK\)\(~\)\(\Delta HAC\) (2)

Từ (1) và (2) =)  \(\Delta HIK\)\(~\)\(\Delta ABC\)

Do \(HE\)\(\perp\)\(AB\)\(\Rightarrow\)\(\widehat{A\text{E}H}\)= 900

      \(HF\)\(\perp\)\(AC\)\(\Rightarrow\)\(\widehat{FHE}\)= 900

Xét tứ giác AEHF có:

\(\widehat{BAC}=\widehat{A\text{E}H}=\widehat{FHE}\)\(=90^0\)

\(\Rightarrow\)AEHF là hình chữ nhật \(\Rightarrow\) AE = HF 

Xét \(\Delta ABC\)\(\perp\)tại \(A\)

Áp dụng định lí py - ta - go

BC=  AB2 +  AC2

52 =  3+ AC2

AC2 = 16

AC = 4 ( cm )

Ta có ;  \(S_{\Delta ABC}\)\(=\frac{AB.AC}{2}\)\(=\frac{3.4}{2}=6\)cm2

                \(S_{\Delta ABC}=\frac{1}{2}.BC.AH\)\(=\frac{1}{2}.5.AH=2,5.AH\)

  \(\Rightarrow2,5.AH=6\)\(\Rightarrow AH=2,4\)cm

Xét \(\Delta AHC\)\(\perp\)tại A

Áp dụng định lí py - ta - go

AC2 = AH2 +  HC2

42 = (2,4)2 + CH2

CH2 = 10,24

CH = 3,2 cm

Ta có :  \(S_{\Delta AHC}=\frac{AH.AC}{2}=\)\(\frac{2,4.3,2}{2}=3,84\)cm2

            \(S_{\Delta AHC}=\frac{1}{2}.AC.HF\)\(=\frac{1}{2}.4.HF=2.HF\)

\(\Rightarrow\)2.HF = 3.84

           HF = 1.92 cm

\(\Rightarrow A\text{E}=1,92\)( Vì HF = AE , cmt)

19 tháng 2 2021