K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2023

a)

Xét ΔHBA vàΔABC,có:

∠AHB=∠CAB(=90)

∠ABC:chung

⇒ΔHBA ~ΔABC(g-g)

✳Xét ΔHAC vàΔABC,có:

∠CHA=∠CAB(=90)

∠ACB:chung

⇒ΔHAC ~ΔABC(g-g)

a: Xét ΔHBA vuôngtại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng vơi ΔABC

Xét ΔHAC vuôngtại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng với ΔABC

b: ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC=HA/AC

=>BA^2=BH*BC và BA*AC=AH*CB

Xet ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

HB=3^2/5=1,8cm

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔACB vuông tại A có AH vuông góc BC

nên HA^2=HB*HC

c: \(CB=\sqrt{16^2+12^2}=20\left(cm\right)\)

BH=16^2/20=256/20=12,8cm

10 tháng 5 2023

Sai r

 

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC vuông tại A có AH vuông góc CB

nên HA^2=HB*HC

c: \(BC=\sqrt{16^2+12^2}=20\left(cm\right)\)

HB=16^2/20=256/20=12,8cm

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

25 tháng 2 2020

a) Xét tam giác ABC và tan giác HBA, ta có: 

\(\widehat{BAC}\)=\(\widehat{BHA}\)\(\left(=90^o\right)\)

\(\widehat{B}\)là góc chung

   => Tam giác ABC ~ tam giác HBA (g-g)

   =>\(\frac{AB}{BH}\)=\(\frac{BC}{BA}\) (tỉ số tương ứng)

Hay \(\frac{AB}{BH}\)=\(\frac{BC}{AB}\)

   <=> AB . AB = BC . BH

   <=> \(AB^2\)= BC . BH

b) Xét tam giác ABC và tam giác HAC, ta có:

\(\widehat{BAC}\)=\(\widehat{AHC}\)\(\left(=90^o\right)\)

\(\widehat{C}\)là góc chung

   => Tam giác ABC ~ tam giác HAC (g-g)

Mà tam giác ABC ~ tam giác HBA (cmt)

   => Tam giác HBA ~ tam giác HAC (tính chất)

  => \(\frac{HB}{HA}\)=\(\frac{HA}{HC}\)(tỉ số tương ứng)

Hay \(\frac{HB}{AH}\)=\(\frac{AH}{HC}\)

   <=> AH . AH = HB . HC

   <=> \(AH^2\)= HB . HC

c) Tam giac ABC vuong tai A co:

\(BC^2\)\(AB^2\)+\(AC^2\)(Pytago)

\(BC^2\)\(6^2\)+\(8^2\)

\(BC^2\)= 100

   <=> BC =\(\sqrt{100}\)(BC > 0)

   <=> BC = 10 (cm)

Mat khac: BC = HB + HC

    Tam giac HAC vuong tai H co:

\(AC^2\)=\(AH^2\)+\(HC^2\)(Pytago)

\(8^2\)= HB . HC + \(HC^2\)

64 = HC (HB + HC)

64 = HC . BC

64 = HC . 10

   => HC = 6,4 (cm)

Ma BC = HB + HC

   => 10 = HB + 6,4

   <=> HB = 3,6 (cm)

   Ta co:

\(AH^2\)= HB . HC (cmt)

   =>\(AH^2\)= 3,6 . 6,4

   <=> \(AH^2\)= 23,04

   <=> AH = \(\sqrt{23,04}\)(AH > 0)

   <=> AH = 4,8 (cm)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

b) Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Xét ΔHAC vuông tại H và ΔABC vuông tại A có 

\(\widehat{C}\) chung

Do đó: ΔHAC\(\sim\)ΔABC(g-g)

d) Xét tứ giác AEHF có 

\(\widehat{EAF}=90^0\)

\(\widehat{AEH}=90^0\)

\(\widehat{AFH}=90^0\)

Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

 
10 tháng 7 2021

mk cần phần C và D bn có thể diễn giải chi tiết được không

 

26 tháng 3 2016

Mình đã giải xong câu a, b, c. Nhờ các bạn và quý thầy cô giải giúp câu d. Chỉ cần tóm tắt lời giải thôi cũng được ạ.

26 tháng 3 2016

d) SADE = 1/2.AD.AE ; SABC = 1/2.AB.AC => SADE / SABC = AD.AE/AB.AC =1/4 (1)

Do tg ADE đồng dạng tg ABC => SADE / SABC = (DE/BC)2 = (AH/BC)2 (2)

Từ (1) và (2) => AH/BC = 1/2 hay AH = !/2 BC. Vậy AH là đường trung tuyến tg ABC, mà AH là đường cao => tg ABC cân tại A 

15 tháng 3 2021
answer-reply-image lời giải đây nhé e ❤️. tham khảo nhé!