Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nha, vẽ trên máy lâu lắm
a)Cm AMDN là HCN(3 góc vuông)
=>AD=MN(t/c hcn)
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
A B C D M N H E
a) AMDN là hình chữ nhật (vì có 3 góc vuông, góc thứ tư = 360 - 3.90 = 90)
=> Hai đường chéo bằng nhau AD = MN
b) góc H = 1 v => H thuộc đường tròn đường kính AD, mà đường tròn đường kính AD cũng chính là đường tròn đi qua 4 điểm của hình chữ nhật AMDN và cũng là đường tròn đường kính MN
=> Góc MHN thuộc đường tròn đường kính MN => Góc MHN = 1 v (góc trên đường tròn nhín đường kính dưới 1 goc vuông.
c) Trung điểm E của MN chính là giao của 2 đường chéo AMDN => E là trung điểm của AD => E nằm trên đường trung bình của tam giác ABC (đường nét đứt trên hình vẽ)
trung điểm MN chạy trên đường trung bình của tam giác abc( mấy phần kia dễ r mk ko lm)
cụ thể :
do ABMN là hình chữ nhật ( sẽ phải cm ở phần a)
=> AD và MN giao nhau tại trung điểm mỗi đường
gọi I là trung điểm MN thì I là trung điểm AD
lấy H là trung điểm AB
lấy K là trung điểm AC
HI song song BC( dễ dàng chứng minh do HI// BD _ đường trung binh)
KI song song BC(dễ dàng chứng minh do KI//DC_ đường trung bình)
=> H , I ,K thằng hàng hay I chạy trên HK
Vậy
trung điểm MN chạy trên đường trung bình HK của tam giác abc
a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ
nên AMDN là hình chữ nhật
Suy ra: AD=MN
b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ
nên AMHD là tứ giác nội tiếp
=>A,M,H,D cùng thuộc 1 đường tròn (1)
Xét tứ giác AMDN có góc AMD+góc AND=180 độ
nên AMDN là tứ giác nội tiếp
=>A,M,D,N cùng thuộc 1 đường tròn(2)
Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn
=>AMHN là tứ giác nội tiếp
=>góc AHM=90 độ
A B C H D I K O M N
a) 2 đoạn AD và IK cắt nhau ở O. Nối O với H.
Xét tứ giác AIDK: ^IAK = ^AID = ^AKD = 900 => Tứ giác AIDK là hình chữ nhật
O là tâm của hình chữ nhật AIDK => O là trung điểm AD & IK; OA=OD=OI=OK
Xét \(\Delta\)AHD: ^AHD=900; O là trung điểm AD => OH=OA=OD
=> OH=OI=OK. Trong \(\Delta\)HIK có: O là trung điểm IK; OH=OI=OK
=> \(\Delta\)HIK vuông tại H => ^IHK = 900 (đpcm).
b) Lấy M và N lần lượt là trung điểm của AB và AC.
Xét \(\Delta\)BAD: O là trung điểm AD; M là trung điểm AB => OM là đường trung bình \(\Delta\)BAD
=> OM // BD hay OM // BC. Tương tự: ON // BC
=> 3 điểm M;O;N thẳng hàng => O nằm trên đường trung bình MN cố định của \(\Delta\)ABC
Vậy khi D chạy trên BC thì O (Trung điểm IK) luôn chạy trên đường trung bình của \(\Delta\)ABC.
c) Ta có tứ giác AIDK là hình chữ nhật có 2 đường chéo AD là IK => AD=IK
Mà AD > AH (Q/h đường xiên hình chiếu) nên IK > AH
=> Độ dài ngắn nhất của IK là AH. Dấu "=" xảy ra khi điểm D trùng điểm H.
Giải thích các bước giải:
a. Vì DM⊥AB⇒ˆDMA=90oDM⊥AB⇒DMA^=90o,
DN⊥AC⇒ˆDNA=90oDN⊥AC⇒DNA^=90o,
ΔABC⊥A⇒ˆA=90oΔABC⊥A⇒A^=90o
⇒◊AMDN⇒◊AMDN là hình chữ nhật.
Áp dụng định lý Pitago vào ΔAMD⊥M,AM=3cm,AD=5cmΔAMD⊥M,AM=3cm,AD=5cm có:
MD=√AD2−AM2=4cmMD=AD2−AM2=4cm
⇒SAMDN=AM.DM=12cm2⇒SAMDN=AM.DM=12cm2
b. Gọi AD∩MN=E⇒EAD∩MN=E⇒E là trung điểm AD, MN
Mà AH⊥BCAH⊥BC
ΔAHD⊥H,EΔAHD⊥H,E là trung điểm cạnh huyền ADAD
⇒EH=EA=ED=EM=EN⇒EH=EA=ED=EM=EN
⇒ΔMHN⇒ΔMHN vuông tại HH
⇒ˆMHN=90o⇒MHN^=90o
c. Gọi G,IG,I là trung điểm AB,ACAB,AC suy ra GIGI là đường trung bình của ΔABCΔABC
⇒GI//BC⇒GI//BC
⇒GE,EI⇒GE,EI là đường trung bình ΔABD,ΔADC⇒GE//BD,EI//DCΔABD,ΔADC⇒GE//BD,EI//DC hay GE,EI//BCGE,EI//BC
⇒E∈GI⇒E∈GI
⇒⇒ Trung điểm EE của MNMN di chuyển trên đường trung bình ΔABCΔABC.
DMA = MAN = AND = 900
=> AMDN là hình chữ nhật
=> AD = MN
I là trung điểm của MN và AD
=> HI là đường trung tuyến của tam giác HAD vuông tại H
=> HI = AD/2
mà AD = MN (chứng minh trên)
=> HI = MN/2
mà HI là đường trung tuyến của tam giác HMN (I là trung điểm của MN)
=> Tam giác HMN vuông tại H
=> MHN = 900
Kẻ IK _I_ HD
mà AH _I_ HD
=> IK // AH
mà I là trung điểm của AD (chứng minh trên)
=> K là trung điểm của HD
=> IK là đường trung bình của tam giác DAH
=> IK = AH/2
Điểm I cách đoạn thẳng BC 1 khoảng cố định bằng 1 nửa AH không đổi
=> Điểm I di chuyển trên đường thẳng song song với BC và cách BC 1 khoảng bằng nửa AH
Chúc bạn học tốt *(^o^)*
tks bn nhìu nha