K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2016

DMA = MAN = AND = 900

=> AMDN là hình chữ nhật

=> AD = MN

I là trung điểm của MN và AD

=> HI là đường trung tuyến của tam giác HAD vuông tại H

=> HI = AD/2

mà AD = MN (chứng minh trên)

=> HI = MN/2

mà HI là đường trung tuyến của tam giác HMN (I là trung điểm của MN)

=> Tam giác HMN vuông tại H

=> MHN = 900

Kẻ IK _I_ HD

mà AH _I_ HD

=> IK // AH

mà I là trung điểm của AD (chứng minh trên)

=> K là trung điểm của HD

=> IK là đường trung bình của tam giác DAH

=> IK = AH/2

Điểm I cách đoạn thẳng BC 1 khoảng cố định bằng 1 nửa AH không đổi

=> Điểm I di chuyển trên đường thẳng song song với BC và cách BC 1 khoảng bằng nửa AH

Chúc bạn học tốt *(^o^)*

2 tháng 12 2019

tks bn nhìu nhahihi

27 tháng 11 2016

Tự vẽ hình nha, vẽ trên máy lâu lắm

a)Cm AMDN là HCN(3 góc vuông)

=>AD=MN(t/c hcn)

5 tháng 11 2017

Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.

Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599

             = (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )

             =(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )

             = ( 1 + 5 + 52)(1 + 53+....+597)

             = 31(1 + 53+....+597)

Vì có một thừa số là 31 nên A chia hết cho 31.

 P/s Đừng để ý câu trả lời của mình

12 tháng 10 2014


A B C D M N H E

a) AMDN là hình chữ nhật (vì có 3 góc vuông, góc thứ tư = 360 - 3.90 = 90)

=> Hai đường chéo bằng nhau AD = MN

b) góc H = 1 v => H thuộc đường tròn đường kính AD, mà đường tròn đường kính AD cũng chính là đường tròn đi qua 4 điểm của hình chữ nhật AMDN và cũng là đường tròn đường kính MN

=> Góc MHN thuộc đường tròn đường kính MN => Góc MHN = 1 v (góc trên đường tròn nhín đường kính dưới 1 goc vuông.

c) Trung điểm E của MN chính là giao của 2 đường chéo AMDN => E là trung điểm của AD => E nằm trên đường trung bình của tam giác ABC (đường nét đứt trên hình vẽ)

8 tháng 7 2018

phần b có cách giải nào khác nữa ko bạn

trung điểm MN chạy trên đường trung bình của tam giác abc( mấy phần kia dễ r mk ko lm)

cụ thể :

do ABMN là hình chữ nhật ( sẽ phải cm ở phần a)

=> AD và MN giao nhau tại trung điểm mỗi đường 

gọi I là trung điểm MN thì I là trung điểm AD 

lấy H là trung điểm AB

lấy K là trung điểm AC

HI song song BC( dễ dàng chứng minh do HI// BD _ đường trung binh)

KI song song BC(dễ dàng chứng minh do KI//DC_ đường trung bình)

=> H , I ,K thằng hàng hay I chạy trên HK

Vậy 

trung điểm MN chạy trên đường trung bình HK của tam giác abc

18 tháng 11 2017

Giải hộ mk câu b mk ko bít làm câu b

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

Suy ra: AD=MN

b: Xét tứ giác AMHD có góc AMD=góc AHD=90 độ

nên AMHD là tứ giác nội tiếp

=>A,M,H,D cùng thuộc 1 đường tròn (1)

Xét tứ giác AMDN có góc AMD+góc AND=180 độ

nên AMDN là tứ giác nội tiếp

=>A,M,D,N cùng thuộc 1 đường tròn(2)

Từ (1) và (2) suy ra A,M,H,D,N cùg thuộc 1 đường tròn

=>AMHN là tứ giác nội tiếp

=>góc AHM=90 độ

5 tháng 7 2018

A B C H D I K O M N

a) 2 đoạn AD và IK cắt nhau ở O. Nối O với H.

Xét tứ giác AIDK: ^IAK = ^AID = ^AKD = 900 => Tứ giác AIDK là hình chữ nhật

O là tâm của hình chữ nhật AIDK => O là trung điểm AD & IK; OA=OD=OI=OK

Xét \(\Delta\)AHD: ^AHD=900; O là trung điểm AD => OH=OA=OD

=> OH=OI=OK. Trong \(\Delta\)HIK có: O là trung điểm IK; OH=OI=OK

=> \(\Delta\)HIK vuông tại H => ^IHK = 900 (đpcm).

b) Lấy M và N lần lượt là trung điểm của AB và AC.

Xét \(\Delta\)BAD: O là trung điểm AD; M là trung điểm AB => OM  là đường trung bình \(\Delta\)BAD

=> OM // BD hay OM // BC. Tương tự: ON // BC

=> 3 điểm M;O;N thẳng hàng => O nằm trên đường trung bình MN cố định của \(\Delta\)ABC

Vậy khi D chạy trên BC thì O (Trung điểm IK) luôn chạy trên đường trung bình của \(\Delta\)ABC.

c) Ta có tứ giác AIDK là hình chữ nhật có 2 đường chéo AD là IK => AD=IK

Mà AD > AH (Q/h đường xiên hình chiếu) nên IK > AH

=> Độ dài ngắn nhất của IK là AH. Dấu "=" xảy ra khi điểm D trùng điểm H.

19 tháng 11 2021

Giải thích các bước giải:

a. Vì DM⊥AB⇒ˆDMA=90oDM⊥AB⇒DMA^=90o,

DN⊥AC⇒ˆDNA=90oDN⊥AC⇒DNA^=90o,

ΔABC⊥A⇒ˆA=90oΔABC⊥A⇒A^=90o

⇒◊AMDN⇒◊AMDN là hình chữ nhật.

Áp dụng định lý Pitago vào ΔAMD⊥M,AM=3cm,AD=5cmΔAMD⊥M,AM=3cm,AD=5cm có:

MD=√AD2−AM2=4cmMD=AD2−AM2=4cm

⇒SAMDN=AM.DM=12cm2⇒SAMDN=AM.DM=12cm2

b. Gọi AD∩MN=E⇒EAD∩MN=E⇒E là trung điểm AD, MN

Mà AH⊥BCAH⊥BC

ΔAHD⊥H,EΔAHD⊥H,E là trung điểm cạnh huyền ADAD

⇒EH=EA=ED=EM=EN⇒EH=EA=ED=EM=EN

⇒ΔMHN⇒ΔMHN vuông tại HH

⇒ˆMHN=90o⇒MHN^=90o

c. Gọi G,IG,I là  trung điểm AB,ACAB,AC suy ra GIGI là đường trung bình của ΔABCΔABC

⇒GI//BC⇒GI//BC

⇒GE,EI⇒GE,EI là đường trung bình ΔABD,ΔADC⇒GE//BD,EI//DCΔABD,ΔADC⇒GE//BD,EI//DC hay GE,EI//BCGE,EI//BC

⇒E∈GI⇒E∈GI

⇒⇒ Trung điểm EE của MNMN di chuyển trên đường trung bình ΔABCΔABC.