K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

A B C H D I K O M N

a) 2 đoạn AD và IK cắt nhau ở O. Nối O với H.

Xét tứ giác AIDK: ^IAK = ^AID = ^AKD = 900 => Tứ giác AIDK là hình chữ nhật

O là tâm của hình chữ nhật AIDK => O là trung điểm AD & IK; OA=OD=OI=OK

Xét \(\Delta\)AHD: ^AHD=900; O là trung điểm AD => OH=OA=OD

=> OH=OI=OK. Trong \(\Delta\)HIK có: O là trung điểm IK; OH=OI=OK

=> \(\Delta\)HIK vuông tại H => ^IHK = 900 (đpcm).

b) Lấy M và N lần lượt là trung điểm của AB và AC.

Xét \(\Delta\)BAD: O là trung điểm AD; M là trung điểm AB => OM  là đường trung bình \(\Delta\)BAD

=> OM // BD hay OM // BC. Tương tự: ON // BC

=> 3 điểm M;O;N thẳng hàng => O nằm trên đường trung bình MN cố định của \(\Delta\)ABC

Vậy khi D chạy trên BC thì O (Trung điểm IK) luôn chạy trên đường trung bình của \(\Delta\)ABC.

c) Ta có tứ giác AIDK là hình chữ nhật có 2 đường chéo AD là IK => AD=IK

Mà AD > AH (Q/h đường xiên hình chiếu) nên IK > AH

=> Độ dài ngắn nhất của IK là AH. Dấu "=" xảy ra khi điểm D trùng điểm H.

11 tháng 8 2019

A B C H M I K

Không mất tính tổng quát, ta xét M thuộc HC (trường hợp M thuộc HB tương tự)

Tam giác ABC vuông tại A có đường cao AH xuất phát từ đỉnh A nên \(AH=\frac{1}{2}BC\) (1) và AH cũng là đường trung tuyến \(\Rightarrow HC=HB=\frac{1}{2}BC\) (2) và đường phân giác => ^CAH = ^BAH. Từ (1) và (2) suy ra \(\Delta\)AHC vuông cân tại H. Từ đó 

AH = HC và ^ACH = ^HAC = ^BAH. Tới đây tìm cách chứng minh AI = CK(mình chưa biết làm đâu:v). Từ đó suy ra \(\Delta\)HIA = \(\Delta\)HKC. Suy ra ^AHI = ^CHK suy ra ^IHK = ^IHA + ^AHK = ^CHK + ^AHK = 90o => \(\Delta\)IHK vuông tại H (3)

Mặt khác từ  \(\Delta\)HIA = \(\Delta\)HKC suy ra HI =HK suy ra  \(\Delta\)IHK cân tại H (4)

Từ (3) và (4) suy ra đpcm.

P/s: Ko chắc, bác zZz Cool Kid zZz check giúp:v

11 tháng 8 2019

làm đoạn tth thiếu nhé:

cm AI=CK

t/g ABC vuông cân tại A => ABC^=45 độ

t/g BIM có I^=90 độ mà ABC^=45 độ => BMI^=45 độ

=> t/g BIM vuông cân tại I => BI=IM 

Mà tứ giác BIAK có I^=A^=K^=90 độ => tứ giác BIAK là HCN => IM=AK=BI

Mà AB=AC

=> AB-BI=AC-AK

=>  AI=CK 

a: góc AEH=góc ADH=góc DAE=90 độ

=>AEHD là hình chữ nhật

b: Xét ΔADH vuông tại D và ΔAHB vuông tại H có

góc DAH chung

=>ΔADH đồng dạng với ΔAHB

c: ΔAHC vuông tại H có HE vuông góc AC

nên HE^2=AE*EC

a: Xét tứ giác AMDN có góc AMD=góc AND=góc MAN=90 độ

nên AMDN là hình chữ nhật

b: Xét tứ giác NKIM có

D là trung điểm của NI

D là trung điểm của KM

Do đó: NKIM là hình bình hành

mà NI vuông góc với KM

nên NKIM là hình thoi

c: Xét ΔABC có DN//AB

nên DN/AB=CN/CA=CD/CB

=>CN=1/2CA
hay N là trung điểm của AC

Xét ΔABC có DM//AC
nên BM/BA=BD/BC=1/2

hay BM=1/2BA
=>M là trung điểm của AB

Ta có: ΔAHB vuông tại H 

mà HM là đường trung tuyến

nên MA=MH

Ta có: ΔAHC vuông tại H

mà HN là đừog trung tuyến

nên HN=AN

Xét ΔMAN và ΔMHN có

MA=MH

AN=HN

MN chung

Do đó: ΔMAN=ΔMHN

Suy ra:góc MHN=90 độ